CSpace
Enhanced empirical likelihood estimation of incubation period of COVID-19 by integrating published information
Jiang, Zhongfeng1; Yang, Baoying2; Qin, Jing3; Zhou, Yong4,5
2021-05-11
发表期刊STATISTICS IN MEDICINE
ISSN0277-6715
页码17
摘要Since the outbreak of the new coronavirus disease (COVID-19), a large number of scientific studies and data analysis reports have been published in the International Journal of Medicine and Statistics. Taking the estimation of the incubation period as an example, we propose a low-cost method to integrate external research results and available internal data together. By using empirical likelihood method, we can effectively incorporate summarized information even if it may be derived from a misspecified model. Taking the possible uncertainty in summarized information into account, we augment a logarithm of the normal density in the log empirical likelihood. We show that the augmented log-empirical likelihood can produce enhanced estimates for the underlying parameters compared with the method without utilizing auxiliary information. Moreover, the Wilks' theorem is proved to be true. We illustrate our methodology by analyzing a COVID-19 incubation period data set retrieved from Zhejiang Province and summarized information from a similar study in Shenzhen, China.
关键词augmented log‐ empirical likelihood COVID‐ 19 incubation period meta‐ analysis Wilks&apos theorem
DOI10.1002/sim.9026
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[11501472] ; State Key Program of National Natural Science Foundation of China[71931004]
WOS研究方向Mathematical & Computational Biology ; Public, Environmental & Occupational Health ; Medical Informatics ; Research & Experimental Medicine ; Mathematics
WOS类目Mathematical & Computational Biology ; Public, Environmental & Occupational Health ; Medical Informatics ; Medicine, Research & Experimental ; Statistics & Probability
WOS记录号WOS:000649037300001
出版者WILEY
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/58630
专题中国科学院数学与系统科学研究院
通讯作者Yang, Baoying
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
2.Southwest Jiaotong Univ, Dept Stat, Coll Math, Chengdu 611756, Sichuan, Peoples R China
3.NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA
4.MOE, Key Lab Adv Theory & Applicat Stat & Data Sci, Shanghai, Peoples R China
5.East China Normal Univ, Acad Stat & Interdisciplinary Sci, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Zhongfeng,Yang, Baoying,Qin, Jing,et al. Enhanced empirical likelihood estimation of incubation period of COVID-19 by integrating published information[J]. STATISTICS IN MEDICINE,2021:17.
APA Jiang, Zhongfeng,Yang, Baoying,Qin, Jing,&Zhou, Yong.(2021).Enhanced empirical likelihood estimation of incubation period of COVID-19 by integrating published information.STATISTICS IN MEDICINE,17.
MLA Jiang, Zhongfeng,et al."Enhanced empirical likelihood estimation of incubation period of COVID-19 by integrating published information".STATISTICS IN MEDICINE (2021):17.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Zhongfeng]的文章
[Yang, Baoying]的文章
[Qin, Jing]的文章
百度学术
百度学术中相似的文章
[Jiang, Zhongfeng]的文章
[Yang, Baoying]的文章
[Qin, Jing]的文章
必应学术
必应学术中相似的文章
[Jiang, Zhongfeng]的文章
[Yang, Baoying]的文章
[Qin, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。