CSpace
Model averaging prediction for time series models with a diverging number of parameters
Liao, Jun1,2; Zou, Guohua2; Gao, Yan3; Zhang, Xinyu4
2021-07-01
发表期刊JOURNAL OF ECONOMETRICS
ISSN0304-4076
卷号223期号:1页码:190-221
摘要An important problem with the model averaging approach is the choice of weights. In this paper, a generalized Mallows model averaging (GMMA) criterion for choosing weights is developed in the context of an infinite order autoregressive (AR(infinity)) process. The GMMA method adapts to the circumstances in which the dimensions of candidate models can be large and increase with the sample size. The GMMA method is shown to be asymptotically optimal in the sense of achieving the lowest out-of-sample mean squared prediction error (MSPE) for both the independent-realization and the same-realization predictions, which, as a byproduct, solves a conjecture put forward by Hansen (2008) that the well-known Mallows model averaging criterion from Hansen (2007) is asymptotically optimal for predicting the future of a time series. The rate of the GMMA-based weight estimator tending to the optimal weight vector minimizing the independent-realization MSPE is derived as well. Both simulation experiment and real data analysis illustrate the merits of the GMMA method in the prediction of an AR(infinity) process. (C) 2020 Elsevier B.V. All rights reserved.
关键词Asymptotic optimality Autoregressive process Consistency Mallows criterion Model averaging
DOI10.1016/j.jeconom.2020.10.004
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[12001534] ; National Natural Science Foundation of China[11971323] ; National Natural Science Foundation of China[12031016] ; National Natural Science Foundation of China[71925007] ; National Natural Science Foundation of China[71522004] ; National Natural Science Foundation of China[71631008] ; Ministry of Science and Technology of China[2016YFB0502301] ; National Key R&D Program of China[2020AAA0105200] ; Beijing Academy of Artificial Intelligence, China ; Youth Innovation Promotion Association of the Chinese Academy of Sciences
WOS研究方向Business & Economics ; Mathematics ; Mathematical Methods In Social Sciences
WOS类目Economics ; Mathematics, Interdisciplinary Applications ; Social Sciences, Mathematical Methods
WOS记录号WOS:000646253400008
出版者ELSEVIER SCIENCE SA
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/58591
专题中国科学院数学与系统科学研究院
通讯作者Zou, Guohua
作者单位1.Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
2.Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
3.Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liao, Jun,Zou, Guohua,Gao, Yan,et al. Model averaging prediction for time series models with a diverging number of parameters[J]. JOURNAL OF ECONOMETRICS,2021,223(1):190-221.
APA Liao, Jun,Zou, Guohua,Gao, Yan,&Zhang, Xinyu.(2021).Model averaging prediction for time series models with a diverging number of parameters.JOURNAL OF ECONOMETRICS,223(1),190-221.
MLA Liao, Jun,et al."Model averaging prediction for time series models with a diverging number of parameters".JOURNAL OF ECONOMETRICS 223.1(2021):190-221.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liao, Jun]的文章
[Zou, Guohua]的文章
[Gao, Yan]的文章
百度学术
百度学术中相似的文章
[Liao, Jun]的文章
[Zou, Guohua]的文章
[Gao, Yan]的文章
必应学术
必应学术中相似的文章
[Liao, Jun]的文章
[Zou, Guohua]的文章
[Gao, Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。