KMS Of Academy of mathematics and systems sciences, CAS
Delayed blow-up by transport noise | |
Flandoli, Franco1; Galeati, Lucio2; Luo, Dejun3,4![]() | |
2021-02-25 | |
发表期刊 | COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
![]() |
ISSN | 0360-5302 |
页码 | 32 |
摘要 | For some deterministic nonlinear PDEs on the torus whose solutions may blow up in finite time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed by multiplicative noise of transport type in a certain scaling limit. The main result is applied to the 3D Keller-Segel, 3D Fisher-KPP, and 2D Kuramoto-Sivashinsky equations, yielding long-time existence for large initial data with high probability. |
关键词 | Dissipation enhancement Fisher– KPP equation Keller– Segel equation Kuramoto– Sivashinsky equation scaling limit transport noise |
DOI | 10.1080/03605302.2021.1893748 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2020YFA0712700] ; National Natural Science Foundation of China[11688101] ; National Natural Science Foundation of China[11931004] ; National Natural Science Foundation of China[12090014] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000628048300001 |
出版者 | TAYLOR & FRANCIS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/58427 |
专题 | 应用数学研究所 |
通讯作者 | Flandoli, Franco |
作者单位 | 1.Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56124 Pisa, Italy 2.Univ Bonn, Inst Appl Math, Bonn, Germany 3.Chinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing, Peoples R China 4.Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Flandoli, Franco,Galeati, Lucio,Luo, Dejun. Delayed blow-up by transport noise[J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS,2021:32. |
APA | Flandoli, Franco,Galeati, Lucio,&Luo, Dejun.(2021).Delayed blow-up by transport noise.COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS,32. |
MLA | Flandoli, Franco,et al."Delayed blow-up by transport noise".COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS (2021):32. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论