KMS Of Academy of mathematics and systems sciences, CAS
A Characterization of Secant Varieties of Severi Varieties Among Cubic Hypersurfaces | |
Fu, Baohua1,2,3; Jeong, Yewon2; Zak, Fyodor L.4 | |
2021-02-01 | |
Source Publication | INTERNATIONAL MATHEMATICS RESEARCH NOTICES
![]() |
ISSN | 1073-7928 |
Volume | 2021Issue:4Pages:2763-2782 |
Abstract | It is shown that an irreducible cubic hypersurface with nonzero Hessian and smooth singular locus is the secant variety of a Severi variety if and only if its Lie algebra of infinitesimal linear automorphisms admits a nonzero prolongation. |
DOI | 10.1093/imrn/rnaa223 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[11771425] ; National Natural Science Foundation of China[11688101] ; Postdoctoral International Exchange Program of China[Y890172G21] |
WOS Research Area | Mathematics |
WOS Subject | Mathematics |
WOS ID | WOS:000630056600013 |
Publisher | OXFORD UNIV PRESS |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.amss.ac.cn/handle/2S8OKBNM/58409 |
Collection | 中国科学院数学与系统科学研究院 |
Corresponding Author | Jeong, Yewon |
Affiliation | 1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Lab Math, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 4.Russian Acad Sci, Cent Econ Math Inst, Nakhimovskii Av 47, Moscow 117418, Russia |
Recommended Citation GB/T 7714 | Fu, Baohua,Jeong, Yewon,Zak, Fyodor L.. A Characterization of Secant Varieties of Severi Varieties Among Cubic Hypersurfaces[J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2021,2021(4):2763-2782. |
APA | Fu, Baohua,Jeong, Yewon,&Zak, Fyodor L..(2021).A Characterization of Secant Varieties of Severi Varieties Among Cubic Hypersurfaces.INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2021(4),2763-2782. |
MLA | Fu, Baohua,et al."A Characterization of Secant Varieties of Severi Varieties Among Cubic Hypersurfaces".INTERNATIONAL MATHEMATICS RESEARCH NOTICES 2021.4(2021):2763-2782. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment