KMS Of Academy of mathematics and systems sciences, CAS
Yang-Yang functions, monodromy and knot polynomials | |
Liu, Peng1; Ruan, Wei-Dong2 | |
2021-03-02 | |
发表期刊 | JOURNAL OF HIGH ENERGY PHYSICS
![]() |
ISSN | 1029-8479 |
期号 | 3页码:41 |
摘要 | We derive a structure of Z[t, t(-1)]-module bundle from a family of Yang-Yang functions. For the fundamental representation of the complex simple Lie algebra of classical type, we give explicit wall-crossing formula and prove that the monodromy representation of the Z[t, t(-1)]-module bundle is equivalent to the braid group representation induced by the universal R-matrices of U-h(g). We show that two transformations induced on the fiber by the symmetry breaking deformation and respectively the rotation of two complex parameters commute with each other. |
关键词 | Chern-Simons Theories Quantum Groups Spontaneous Symmetry Breaking Wilson 't Hooft and Polyakov loops |
DOI | 10.1007/JHEP03(2021)033 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Physics |
WOS类目 | Physics, Particles & Fields |
WOS记录号 | WOS:000625598400007 |
出版者 | SPRINGER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/58322 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Liu, Peng |
作者单位 | 1.Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 10010, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Peng,Ruan, Wei-Dong. Yang-Yang functions, monodromy and knot polynomials[J]. JOURNAL OF HIGH ENERGY PHYSICS,2021(3):41. |
APA | Liu, Peng,&Ruan, Wei-Dong.(2021).Yang-Yang functions, monodromy and knot polynomials.JOURNAL OF HIGH ENERGY PHYSICS(3),41. |
MLA | Liu, Peng,et al."Yang-Yang functions, monodromy and knot polynomials".JOURNAL OF HIGH ENERGY PHYSICS .3(2021):41. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Peng]的文章 |
[Ruan, Wei-Dong]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Peng]的文章 |
[Ruan, Wei-Dong]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Peng]的文章 |
[Ruan, Wei-Dong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论