CSpace
Invariant theory for non-associative real two-dimensional algebras and its applications
Dokovic, D; Zhao, KM
2004-03-01
发表期刊TRANSFORMATION GROUPS
ISSN1083-4362
卷号9期号:1页码:3-23
摘要The set A of all non-associative algebra structures on a fixed 2-dimensional real vector space A is naturally a GL(2, R)-module. We compute the ring of SL(2, R)-invariants in the ring of polynomial functions, P, on A. We use invariant theory to compute the exact number of nonzero idempotents of an arbitrary 2-dimensional real division algebra. We show that the absolute invariants (i.e., the GL(2, R)-invariants in the field of fractions of P) distinguish the isomorphism classes of 2-dimensional non-associative real division algebras. We show that the (open) set Omega(+) subset of A of all division algebra structures on A has four connected components. A similar result is proved for another class of regular 2-dimensional real algebras (the principal isotopes of the algebra R circle plus R).
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000220251700001
出版者BIRKHAUSER BOSTON INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/576
专题中国科学院数学与系统科学研究院
通讯作者Dokovic, D
作者单位1.Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
2.Chinese Acad Sci, Acad Math & Syst Sci, Math Inst, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Dokovic, D,Zhao, KM. Invariant theory for non-associative real two-dimensional algebras and its applications[J]. TRANSFORMATION GROUPS,2004,9(1):3-23.
APA Dokovic, D,&Zhao, KM.(2004).Invariant theory for non-associative real two-dimensional algebras and its applications.TRANSFORMATION GROUPS,9(1),3-23.
MLA Dokovic, D,et al."Invariant theory for non-associative real two-dimensional algebras and its applications".TRANSFORMATION GROUPS 9.1(2004):3-23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dokovic, D]的文章
[Zhao, KM]的文章
百度学术
百度学术中相似的文章
[Dokovic, D]的文章
[Zhao, KM]的文章
必应学术
必应学术中相似的文章
[Dokovic, D]的文章
[Zhao, KM]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。