CSpace  > 应用数学研究所
Semiparametric model-based inference in the presence of missing responses
Wang, Qihua; Dai, Pengjie
2008-09-01
发表期刊BIOMETRIKA
ISSN0006-3444
卷号95期号:3页码:721-734
摘要We consider a semiparametric model that parameterizes the conditional density of the response, given covariates, but allows the marginal distribution of the covariates to be completely arbitrary. Responses may be missing. A likelihood-based imputation estimator and a semi-empirical-likelihood-based estimator for the parameter vector describing the conditional density are defined and proved to be asymptotically normal. Semi-empirical loglikelihood functions for the parameter vector and the response mean are derived. It is shown that the two semi-empirical loglikelihood functions are distributed asymptotically as weighted chi(2) and scaled chi(2), respectively.
关键词asymptotic efficiency missing response multiple imputation semi-empirical likelihood auxiliary information asymptotic normality
DOI10.1093/biomet/asn032
语种英语
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematics
WOS类目Biology ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:000258861000014
出版者OXFORD UNIV PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/5540
专题应用数学研究所
通讯作者Wang, Qihua
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wang, Qihua,Dai, Pengjie. Semiparametric model-based inference in the presence of missing responses[J]. BIOMETRIKA,2008,95(3):721-734.
APA Wang, Qihua,&Dai, Pengjie.(2008).Semiparametric model-based inference in the presence of missing responses.BIOMETRIKA,95(3),721-734.
MLA Wang, Qihua,et al."Semiparametric model-based inference in the presence of missing responses".BIOMETRIKA 95.3(2008):721-734.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Qihua]的文章
[Dai, Pengjie]的文章
百度学术
百度学术中相似的文章
[Wang, Qihua]的文章
[Dai, Pengjie]的文章
必应学术
必应学术中相似的文章
[Wang, Qihua]的文章
[Dai, Pengjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。