KMS Of Academy of mathematics and systems sciences, CAS
| Global Regularity of 2-D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: High Regularity Case | |
| 其他题名 | Global Regularity of 2-D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: High Regularity Case |
| Liao Xian1; Zhang Ping2 | |
| 2019 | |
| 发表期刊 | 分析,理论与应用(英文版)
![]() |
| ISSN | 1672-4070 |
| 页码 | 163-191 |
| 其他摘要 | This paper is a continuation work of 26 and studies the propagation of the high-order boundary regularities of the two-dimensional density patch for viscous inhomogeneous incompressible flow.We assume the initial density ρ0=η11?0+η21?0c,where(η1,η2)is any pair of positive constants and ?0 is a bounded,simply connected domain with Wk+2,p(R2)boundary regularity.We prove that for any positive time t,the density function ρ(t)=η11(?(t))+η21?(t)c,and the domain ?(t) preserves the Wk+2,p-boundary regularity. |
| 收录类别 | CSCD |
| 语种 | 中文 |
| CSCD记录号 | CSCD:6497712 |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/55144 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 作者单位 | 1.德国卡尔斯鲁厄理工学院 2.中国科学院数学与系统科学研究院 |
| 推荐引用方式 GB/T 7714 | Liao Xian,Zhang Ping. Global Regularity of 2-D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: High Regularity Case[J]. 分析,理论与应用(英文版),2019:163-191. |
| APA | Liao Xian,&Zhang Ping.(2019).Global Regularity of 2-D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: High Regularity Case.分析,理论与应用(英文版),163-191. |
| MLA | Liao Xian,et al."Global Regularity of 2-D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: High Regularity Case".分析,理论与应用(英文版) (2019):163-191. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Liao Xian]的文章 |
| [Zhang Ping]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Liao Xian]的文章 |
| [Zhang Ping]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Liao Xian]的文章 |
| [Zhang Ping]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论