CSpace  > 应用数学研究所
Two-stage estimation for seemingly unrelated nonparametric regression models
You, Jinhong1; Xie, Shangyu2; Zhou, Yong2
2007-12-01
发表期刊JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
ISSN1009-6124
卷号20期号:4页码:509-520
摘要This paper is concerned with the estimating problem of seemingly unrelated (SU) non-parametric regression models. The authors propose a new method to estimate the unknown functions, which is an extension of the two-stage procedure in the longitudinal data framework. The authors show the resulted estimators are asymptotically normal and more efficient than those based on only the individual regression equation. Some simulation studies are given in support of the asymptotic results. A real data from an ongoing environmental epidemiologic study are used to illustrate the proposed procedure.
关键词asymptotic normality nonparametric model seemingly unrelated regression two-stage estimation
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Interdisciplinary Applications
WOS记录号WOS:000255240600005
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/5250
专题应用数学研究所
通讯作者You, Jinhong
作者单位1.Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
2.Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
You, Jinhong,Xie, Shangyu,Zhou, Yong. Two-stage estimation for seemingly unrelated nonparametric regression models[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2007,20(4):509-520.
APA You, Jinhong,Xie, Shangyu,&Zhou, Yong.(2007).Two-stage estimation for seemingly unrelated nonparametric regression models.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,20(4),509-520.
MLA You, Jinhong,et al."Two-stage estimation for seemingly unrelated nonparametric regression models".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 20.4(2007):509-520.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[You, Jinhong]的文章
[Xie, Shangyu]的文章
[Zhou, Yong]的文章
百度学术
百度学术中相似的文章
[You, Jinhong]的文章
[Xie, Shangyu]的文章
[Zhou, Yong]的文章
必应学术
必应学术中相似的文章
[You, Jinhong]的文章
[Xie, Shangyu]的文章
[Zhou, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。