KMS Of Academy of mathematics and systems sciences, CAS
Motivic multiple zeta values relative to mu(2) | |
Jin, Zhongyu1; Li, Jiangtao2 | |
2020 | |
发表期刊 | ALGEBRA & NUMBER THEORY
![]() |
ISSN | 1937-0652 |
卷号 | 14期号:10页码:2685-2712 |
摘要 | We establish a short exact sequence about depth-graded motivic double zeta values of even weight relative to mu(2). We find a basis for the depth-graded motivic double zeta values relative to mu(2) of even weight and a basis for the depth-graded motivic triple zeta values relative to mu(2) of odd weight. As an application of our main results, we prove Kaneko and Tasaka's conjectures about the sum odd double zeta values and the classical double zeta values. We also prove an analogue of Kaneko and Tasaka's conjecture in depth three. Finally, we formulate a conjecture which is related to sum odd multiple zeta values in higher depth. |
关键词 | multiple zeta values period polynomial mixed Tate motives |
DOI | 10.2140/ant.2020.14.2685 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000592706500004 |
出版者 | MATHEMATICAL SCIENCE PUBL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/52499 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Jin, Zhongyu |
作者单位 | 1.Peking Univ, Sch Math Sci, Beijing, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Jin, Zhongyu,Li, Jiangtao. Motivic multiple zeta values relative to mu(2)[J]. ALGEBRA & NUMBER THEORY,2020,14(10):2685-2712. |
APA | Jin, Zhongyu,&Li, Jiangtao.(2020).Motivic multiple zeta values relative to mu(2).ALGEBRA & NUMBER THEORY,14(10),2685-2712. |
MLA | Jin, Zhongyu,et al."Motivic multiple zeta values relative to mu(2)".ALGEBRA & NUMBER THEORY 14.10(2020):2685-2712. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jin, Zhongyu]的文章 |
[Li, Jiangtao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jin, Zhongyu]的文章 |
[Li, Jiangtao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jin, Zhongyu]的文章 |
[Li, Jiangtao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论