CSpace
The Dirichlet Problem on Almost Hermitian Manifolds
Li, Chang1; Zheng, Tao2
2020-10-23
发表期刊JOURNAL OF GEOMETRIC ANALYSIS
ISSN1050-6926
页码29
摘要We prove second-order a priori estimate on the boundary for the Dirichlet problem of a class of fully nonlinear equations on compact almost Hermitian manifolds with smooth boundary. As applications, we solve the Dirichlet problem of the Monge-Ampere type equation and of the degenerate Monge-Ampere equation.
关键词Dirichlet problem Monge– Ampè re type equation Degenerate Monge– Ampè re equation Almost Hermitian manifold A priori estimate
DOI10.1007/s12220-020-00540-w
收录类别SCI
语种英语
资助项目China post-doctoral Grant[BX20200356] ; Beijing Institute of Technology
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000583451000003
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/52380
专题中国科学院数学与系统科学研究院
通讯作者Zheng, Tao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Li, Chang,Zheng, Tao. The Dirichlet Problem on Almost Hermitian Manifolds[J]. JOURNAL OF GEOMETRIC ANALYSIS,2020:29.
APA Li, Chang,&Zheng, Tao.(2020).The Dirichlet Problem on Almost Hermitian Manifolds.JOURNAL OF GEOMETRIC ANALYSIS,29.
MLA Li, Chang,et al."The Dirichlet Problem on Almost Hermitian Manifolds".JOURNAL OF GEOMETRIC ANALYSIS (2020):29.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Chang]的文章
[Zheng, Tao]的文章
百度学术
百度学术中相似的文章
[Li, Chang]的文章
[Zheng, Tao]的文章
必应学术
必应学术中相似的文章
[Li, Chang]的文章
[Zheng, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。