CSpace  > 应用数学研究所
W-Entropy, Super Perelman Ricci Flows, and (K, m)-Ricci Solitons
Li, Songzi1; Li, Xiang-Dong2,3
2020-07-01
发表期刊JOURNAL OF GEOMETRIC ANALYSIS
ISSN1050-6926
卷号30期号:3页码:3149-3180
摘要In this paper, we prove a characterization of (K, infinity)-super Perelman Ricci flows by functional inequalities and gradient estimate for the heat semigroup generated by the Witten Laplacian on manifolds equipped with time-dependent metrics and potentials. As a byproduct, we derive the Hamilton type dimension-free Harnack inequality on manifolds with (K, infinity)-super Perelman Ricci flows. Based on a new entropy differential inequality for the heat equation of the Witten Laplacian, we introduce a new W-entropy quantity and prove its monotonicity for the heat equation of the Witten Laplacian On complete Riemannian manifolds with the C D(K, infinity)-condition and on compact manifolds with (K, infinity)-super Perelman Ricci flows. Our results characterize the (K, infinity)-Ricci solitons and the (K, infinity)-Perelman Ricci flows. We also prove an entropy differential inequality on (K, m)-super Perelman Ricci flows, which can be used to characterize the (K, m)-Ricci solitons and the (K, m)-Perelman Ricci flows. Finally, we show that the Gaussian-type solitons on R-m provide asymptotical rigidity models for the W-m,W-K-entropy on manifolds with the CD(-K, m)-condition.
关键词W-entropy Witten Laplacian CD(K, m)-condition (K, m)-Ricci solitons (K, m)-super Perelman Ricci flows (K, m)-Perelman Ricci flow Gaussian solitons
DOI10.1007/s12220-019-00193-4
收录类别SCI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000556209700033
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/51935
专题应用数学研究所
通讯作者Li, Xiang-Dong
作者单位1.Renmin Univ China, Sch Math, 59 Zhongguancun Da Jie, Beijing 100872, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Songzi,Li, Xiang-Dong. W-Entropy, Super Perelman Ricci Flows, and (K, m)-Ricci Solitons[J]. JOURNAL OF GEOMETRIC ANALYSIS,2020,30(3):3149-3180.
APA Li, Songzi,&Li, Xiang-Dong.(2020).W-Entropy, Super Perelman Ricci Flows, and (K, m)-Ricci Solitons.JOURNAL OF GEOMETRIC ANALYSIS,30(3),3149-3180.
MLA Li, Songzi,et al."W-Entropy, Super Perelman Ricci Flows, and (K, m)-Ricci Solitons".JOURNAL OF GEOMETRIC ANALYSIS 30.3(2020):3149-3180.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Songzi]的文章
[Li, Xiang-Dong]的文章
百度学术
百度学术中相似的文章
[Li, Songzi]的文章
[Li, Xiang-Dong]的文章
必应学术
必应学术中相似的文章
[Li, Songzi]的文章
[Li, Xiang-Dong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。