KMS Of Academy of mathematics and systems sciences, CAS
| Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients | |
| Li, Chang | |
| 2020-09-16 | |
| 发表期刊 | ADVANCES IN MATHEMATICS
![]() |
| ISSN | 0001-8708 |
| 卷号 | 371页码:23 |
| 摘要 | In this paper, we consider the V-soliton equation which is a degenerate fully nonlinear equation introduced by La Nave and Tian in their work on Kahler-Ricci flow on symplectic quotients. One can apply the interpretation to study finite time singularities of the Kahler-Ricci flow. As in the case of Kahler-Einstein metrics, we can also reduce the V-soliton equation to a scalar equation on Kahler potentials, which is of Monge-Ampere type. We formulate some preliminary estimates for such a scalar equation on a compact Kahler manifold M. (C) 2020 Elsevier Inc. All rights reserved. |
| 关键词 | Kahler-Ricci flow V-soliton equation Kahler manifold A priori estimates |
| DOI | 10.1016/j.aim.2020.107229 |
| 收录类别 | SCI |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics |
| WOS记录号 | WOS:000549165500003 |
| 出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/51805 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Li, Chang |
| 作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | Li, Chang. Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients[J]. ADVANCES IN MATHEMATICS,2020,371:23. |
| APA | Li, Chang.(2020).Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients.ADVANCES IN MATHEMATICS,371,23. |
| MLA | Li, Chang."Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients".ADVANCES IN MATHEMATICS 371(2020):23. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Li, Chang]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Li, Chang]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Li, Chang]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论