CSpace
Truncated tests for combining evidence of summary statistics
Bu, Deliang1,2; Yang, Qinglong3; Meng, Zhen4; Zhang, Sanguo1,2; Li, Qizhai1,4
2020-06-24
发表期刊GENETIC EPIDEMIOLOGY
ISSN0741-0395
页码15
摘要To date, thousands of genetic variants to be associated with numerous human traits and diseases have been identified by genome-wide association studies (GWASs). The GWASs focus on testing the association between single trait and genetic variants. However, the analysis of multiple traits and single nucleotide polymorphisms (SNPs) might reflect physiological process of complex diseases and the corresponding study is called pleiotropy association analysis. Modern day GWASs report only summary statistics instead of individual-level phenotype and genotype data to avoid logistical and privacy issues. Existing methods for combining multiple phenotypes GWAS summary statistics mainly focus on low-dimensional phenotypes while lose power in high-dimensional cases. To overcome this defect, we propose two kinds of truncated tests to combine multiple phenotypes summary statistics. Extensive simulations show that the proposed methods are robust and powerful when the dimension of the phenotypes is high and only part of the phenotypes are associated with the SNPs. We apply the proposed methods to blood cytokines data collected from Finnish population. Results show that the proposed tests can identify additional genetic markers that are missed by single trait analysis.
关键词high-dimensional phenotypes pleiotropy summary statistics truncated test
DOI10.1002/gepi.22330
收录类别SCI
语种英语
资助项目National Nature Science Foundation of China[11722113] ; National Nature Science Foundation of China[11671311] ; National Nature Science Foundation of China[11971324] ; National Nature Science Foundation of China[U19B2040] ; University of Chinese Academy of Sciences[Y95401TXX2] ; Beijing Natural Science Foundation[Z180006] ; Beijing Natural Science Foundation[Z190004] ; China Institute of Marine Technology and Economy[2019A128] ; Ministry of education of Humanities and Social Science project[19YJC910008]
WOS研究方向Genetics & Heredity ; Mathematical & Computational Biology
WOS类目Genetics & Heredity ; Mathematical & Computational Biology
WOS记录号WOS:000542579800001
出版者WILEY
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/51694
专题中国科学院数学与系统科学研究院
通讯作者Li, Qizhai
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
2.Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
3.Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, LSC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Bu, Deliang,Yang, Qinglong,Meng, Zhen,et al. Truncated tests for combining evidence of summary statistics[J]. GENETIC EPIDEMIOLOGY,2020:15.
APA Bu, Deliang,Yang, Qinglong,Meng, Zhen,Zhang, Sanguo,&Li, Qizhai.(2020).Truncated tests for combining evidence of summary statistics.GENETIC EPIDEMIOLOGY,15.
MLA Bu, Deliang,et al."Truncated tests for combining evidence of summary statistics".GENETIC EPIDEMIOLOGY (2020):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bu, Deliang]的文章
[Yang, Qinglong]的文章
[Meng, Zhen]的文章
百度学术
百度学术中相似的文章
[Bu, Deliang]的文章
[Yang, Qinglong]的文章
[Meng, Zhen]的文章
必应学术
必应学术中相似的文章
[Bu, Deliang]的文章
[Yang, Qinglong]的文章
[Meng, Zhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。