KMS Of Academy of mathematics and systems sciences, CAS
| Minimal consistent finite element space for the biharmonic equation on quadrilateral grids | |
| Zhang, Shuo | |
| 2020-04-01 | |
| 发表期刊 | IMA JOURNAL OF NUMERICAL ANALYSIS
![]() |
| ISSN | 0272-4979 |
| 卷号 | 40期号:2页码:1390-1406 |
| 摘要 | This study presents a finite element space comprising piecewise quadratic polynomials on quadrilateral grids. This space provides a minimal-degree consistent discretisation for the biharmonic equation. |
| 关键词 | minimal finite element space quadrilateral grid quadratic polynomial biharmonic equation |
| DOI | 10.1093/imanum/dry096 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[11471026] ; National Natural Science Foundation of China[11871465] ; National Centre for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied |
| WOS记录号 | WOS:000537398500020 |
| 出版者 | OXFORD UNIV PRESS |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/51570 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Zhang, Shuo |
| 作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | Zhang, Shuo. Minimal consistent finite element space for the biharmonic equation on quadrilateral grids[J]. IMA JOURNAL OF NUMERICAL ANALYSIS,2020,40(2):1390-1406. |
| APA | Zhang, Shuo.(2020).Minimal consistent finite element space for the biharmonic equation on quadrilateral grids.IMA JOURNAL OF NUMERICAL ANALYSIS,40(2),1390-1406. |
| MLA | Zhang, Shuo."Minimal consistent finite element space for the biharmonic equation on quadrilateral grids".IMA JOURNAL OF NUMERICAL ANALYSIS 40.2(2020):1390-1406. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Zhang, Shuo]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Zhang, Shuo]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Zhang, Shuo]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论