KMS Of Academy of mathematics and systems sciences, CAS
Semiclassical states for nonlinear Schrodinger equations with sign-changing potentials | |
Ding, Yanheng; Wei, Juncheng | |
2007-10-15 | |
发表期刊 | JOURNAL OF FUNCTIONAL ANALYSIS
![]() |
ISSN | 0022-1236 |
卷号 | 251期号:2页码:546-572 |
摘要 | We establish the existence and multiplicity of semiclassical bound states of the following nonlinear Schrodinger equation: {-epsilon(2)Delta u+V(x)u=g(x,u) for x is an element of R-N, u(x)-> 0 as vertical bar x vertical bar ->infinity where V changes sign and g is superlinear with critical or supercritical growth as vertical bar u vertical bar ->infinity. (C) 2007 Elsevier Inc. All rights reserved. |
关键词 | nonlinear Schrodinger equation sign-changing potential superlinear supercritical growth |
DOI | 10.1016/j.jfa.2007.07.005 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000250014400006 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/5123 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Wei, Juncheng |
作者单位 | 1.Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China 2.Chinese Acad Sci, AMSS, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Ding, Yanheng,Wei, Juncheng. Semiclassical states for nonlinear Schrodinger equations with sign-changing potentials[J]. JOURNAL OF FUNCTIONAL ANALYSIS,2007,251(2):546-572. |
APA | Ding, Yanheng,&Wei, Juncheng.(2007).Semiclassical states for nonlinear Schrodinger equations with sign-changing potentials.JOURNAL OF FUNCTIONAL ANALYSIS,251(2),546-572. |
MLA | Ding, Yanheng,et al."Semiclassical states for nonlinear Schrodinger equations with sign-changing potentials".JOURNAL OF FUNCTIONAL ANALYSIS 251.2(2007):546-572. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ding, Yanheng]的文章 |
[Wei, Juncheng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ding, Yanheng]的文章 |
[Wei, Juncheng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ding, Yanheng]的文章 |
[Wei, Juncheng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论