KMS Of Academy of mathematics and systems sciences, CAS
Liouville theorem for poly-harmonic functions on R-+(n) | |
Dai, Wei1,2; Qin, Guolin3,4 | |
2020-04-15 | |
Source Publication | ARCHIV DER MATHEMATIK
![]() |
ISSN | 0003-889X |
Pages | 11 |
Abstract | In this paper, we will prove a Liouville theorem for poly-harmonic functions on R-+(n) with Navier boundary conditions, that is, the nonnegative poly-harmonic functions u satisfying u(x) = o(vertical bar x vertical bar(3)) at infinity must assume the form u(x) = Cx(n) in <(R-+(n))over bar>, where n >= 2 and C is a nonnegative constant. The assumption u(x) = o(vertical bar x vertical bar(3)) at infinity is optimal for us to derive the super poly-harmonic properties of u. |
Keyword | Liouville theorems Poly-harmonic functions Super poly-harmonic properties Harmonic asymptotic expansions Navier problems |
DOI | 10.1007/s00013-020-01464-1 |
Indexed By | SCI |
Language | 英语 |
Funding Project | NNSF of China[11971049] ; Fundamental Research Funds for the Central Universities ; State Scholarship Fund of China[201806025011] |
WOS Research Area | Mathematics |
WOS Subject | Mathematics |
WOS ID | WOS:000526656000001 |
Publisher | SPRINGER BASEL AG |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.amss.ac.cn/handle/2S8OKBNM/51170 |
Collection | 中国科学院数学与系统科学研究院 |
Corresponding Author | Dai, Wei |
Affiliation | 1.Beihang Univ BUAA, Sch Math Sci, Beijing 100083, Peoples R China 2.Univ Paris 13, UMR 7539, LAGA, Paris, France 3.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Dai, Wei,Qin, Guolin. Liouville theorem for poly-harmonic functions on R-+(n)[J]. ARCHIV DER MATHEMATIK,2020:11. |
APA | Dai, Wei,&Qin, Guolin.(2020).Liouville theorem for poly-harmonic functions on R-+(n).ARCHIV DER MATHEMATIK,11. |
MLA | Dai, Wei,et al."Liouville theorem for poly-harmonic functions on R-+(n)".ARCHIV DER MATHEMATIK (2020):11. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment