CSpace
Liouville theorem for poly-harmonic functions on R-+(n)
Dai, Wei1,2; Qin, Guolin3,4
2020-04-15
Source PublicationARCHIV DER MATHEMATIK
ISSN0003-889X
Pages11
AbstractIn this paper, we will prove a Liouville theorem for poly-harmonic functions on R-+(n) with Navier boundary conditions, that is, the nonnegative poly-harmonic functions u satisfying u(x) = o(vertical bar x vertical bar(3)) at infinity must assume the form u(x) = Cx(n) in <(R-+(n))over bar>, where n >= 2 and C is a nonnegative constant. The assumption u(x) = o(vertical bar x vertical bar(3)) at infinity is optimal for us to derive the super poly-harmonic properties of u.
KeywordLiouville theorems Poly-harmonic functions Super poly-harmonic properties Harmonic asymptotic expansions Navier problems
DOI10.1007/s00013-020-01464-1
Indexed BySCI
Language英语
Funding ProjectNNSF of China[11971049] ; Fundamental Research Funds for the Central Universities ; State Scholarship Fund of China[201806025011]
WOS Research AreaMathematics
WOS SubjectMathematics
WOS IDWOS:000526656000001
PublisherSPRINGER BASEL AG
Citation statistics
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/51170
Collection中国科学院数学与系统科学研究院
Corresponding AuthorDai, Wei
Affiliation1.Beihang Univ BUAA, Sch Math Sci, Beijing 100083, Peoples R China
2.Univ Paris 13, UMR 7539, LAGA, Paris, France
3.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Recommended Citation
GB/T 7714
Dai, Wei,Qin, Guolin. Liouville theorem for poly-harmonic functions on R-+(n)[J]. ARCHIV DER MATHEMATIK,2020:11.
APA Dai, Wei,&Qin, Guolin.(2020).Liouville theorem for poly-harmonic functions on R-+(n).ARCHIV DER MATHEMATIK,11.
MLA Dai, Wei,et al."Liouville theorem for poly-harmonic functions on R-+(n)".ARCHIV DER MATHEMATIK (2020):11.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Dai, Wei]'s Articles
[Qin, Guolin]'s Articles
Baidu academic
Similar articles in Baidu academic
[Dai, Wei]'s Articles
[Qin, Guolin]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Dai, Wei]'s Articles
[Qin, Guolin]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.