KMS Of Academy of mathematics and systems sciences, CAS
A new superconvergence property of nonconforming rotated Q(1) element in 3D | |
Ming, Pingbing; Shi, Zhong-Ci![]() | |
2007 | |
发表期刊 | COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
![]() |
ISSN | 0045-7825 |
卷号 | 197期号:1-4页码:95-102 |
摘要 | Nonconforming rotated Q(1) finite element method is used to approximate the general second-order elliptic problem in 3D. A new superconvergence property at eight vertices and six face centers of each element is proved. Several cheap numerical integration schemes are proposed for solving the discrete problem, which include schemes with only two nodes. All schemes yield optimal H-1, L-2 error bounds as well as the superconvergence property. Extensive numerical results are presented to confirm the theoretic prediction. (c) 2007 Elsevier B.V. All rights reserved. |
关键词 | superconvergence nonconforming rotated Q(1) element numerical integration |
DOI | 10.1016/j.cma.2007.07.013 |
语种 | 英语 |
WOS研究方向 | Engineering ; Mathematics ; Mechanics |
WOS类目 | Engineering, Multidisciplinary ; Mathematics, Interdisciplinary Applications ; Mechanics |
WOS记录号 | WOS:000251209900007 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/4929 |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Ming, Pingbing |
作者单位 | Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Ming, Pingbing,Shi, Zhong-Ci,Xu, Yun. A new superconvergence property of nonconforming rotated Q(1) element in 3D[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,2007,197(1-4):95-102. |
APA | Ming, Pingbing,Shi, Zhong-Ci,&Xu, Yun.(2007).A new superconvergence property of nonconforming rotated Q(1) element in 3D.COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,197(1-4),95-102. |
MLA | Ming, Pingbing,et al."A new superconvergence property of nonconforming rotated Q(1) element in 3D".COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 197.1-4(2007):95-102. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论