KMS Of Academy of mathematics and systems sciences, CAS
| 2D Toda lattice equation with self-consistent sources: Casoratian type solutions, bilinear Backlund transformation and Lax pair | |
Wang, Hong-Yan; Hu, Xing-Biao ; Gegenhasi
| |
| 2007-05-01 | |
| 发表期刊 | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
![]() |
| ISSN | 0377-0427 |
| 卷号 | 202期号:1页码:133-143 |
| 摘要 | The two-dimensional Toda lattice equation with self-consistent sources is proposed based on its bilinear forms. Casoratian-type solutions and Backlund transformation (BT) for the bilinear forms are presented. Starting from the BT, a Lax pair is derived for the 2D Toda lattice with self-consistent sources. (c) 2006 Published by Elsevier B.V. |
| 关键词 | Toda lattice with sources soliton solutions Backlund transformation and Lax pair |
| DOI | 10.1016/j.cam.2005.08.052 |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied |
| WOS记录号 | WOS:000245147000010 |
| 出版者 | ELSEVIER SCIENCE BV |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/4893 |
| 专题 | 计算数学与科学工程计算研究所 |
| 通讯作者 | Hu, Xing-Biao |
| 作者单位 | 1.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, AMSS, Beijing 100080, Peoples R China 2.Chinese Acad Sci, Grad Sch, Beijing, Peoples R China |
| 推荐引用方式 GB/T 7714 | Wang, Hong-Yan,Hu, Xing-Biao,Gegenhasi. 2D Toda lattice equation with self-consistent sources: Casoratian type solutions, bilinear Backlund transformation and Lax pair[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2007,202(1):133-143. |
| APA | Wang, Hong-Yan,Hu, Xing-Biao,&Gegenhasi.(2007).2D Toda lattice equation with self-consistent sources: Casoratian type solutions, bilinear Backlund transformation and Lax pair.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,202(1),133-143. |
| MLA | Wang, Hong-Yan,et al."2D Toda lattice equation with self-consistent sources: Casoratian type solutions, bilinear Backlund transformation and Lax pair".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 202.1(2007):133-143. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论