CSpace
Normal families and uniqueness of entire functions and their derivatives
Chang, Jiang Ming; Fang, Ming Liang
2007-06-01
发表期刊ACTA MATHEMATICA SINICA-ENGLISH SERIES
ISSN1439-8516
卷号23期号:6页码:973-982
摘要Let f be a nonconstant entire function; let k >= 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a double right arrow f'(z) = a, and f'(z) = a double right arrow f((k))p(z) = a, then either f = Ce-lambda z + a or f = Ce-lambda z + a(lambda - 1)/lambda, where C and lambda are nonzero constants with lambda(k-1) = 1. The proof is based on the Wiman-Valiron theory and the theory of normal families in an essential way.
关键词entire function normal family unicity theorem
DOI10.1007/s10114-005-0861-5
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000246582100003
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/4857
专题中国科学院数学与系统科学研究院
通讯作者Chang, Jiang Ming
作者单位1.Changshu Inst Technol, Dept Math, Changshu 215500, Peoples R China
2.Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
3.S China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100800, Peoples R China
推荐引用方式
GB/T 7714
Chang, Jiang Ming,Fang, Ming Liang. Normal families and uniqueness of entire functions and their derivatives[J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES,2007,23(6):973-982.
APA Chang, Jiang Ming,&Fang, Ming Liang.(2007).Normal families and uniqueness of entire functions and their derivatives.ACTA MATHEMATICA SINICA-ENGLISH SERIES,23(6),973-982.
MLA Chang, Jiang Ming,et al."Normal families and uniqueness of entire functions and their derivatives".ACTA MATHEMATICA SINICA-ENGLISH SERIES 23.6(2007):973-982.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chang, Jiang Ming]的文章
[Fang, Ming Liang]的文章
百度学术
百度学术中相似的文章
[Chang, Jiang Ming]的文章
[Fang, Ming Liang]的文章
必应学术
必应学术中相似的文章
[Chang, Jiang Ming]的文章
[Fang, Ming Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。