CSpace  > 系统科学研究所
dembowskiostrompolynomialsfromreverseddicksonpolynomials
Zhang Xiaoming1; Wu Baofeng2; Liu Zhuojun1
2016
Source Publicationjournalofsystemsscienceandcomplexity
ISSN1009-6124
Volume29Issue:1Pages:259
AbstractThis paper gives a full classification of Dembowski-Ostrom polynomials derived from the compositions of reversed Dickson polynomials and monomials over finite fields of characteristic 2. The authors also classify almost perfect nonlinear functions among all such Dembowski-Ostrom polynomials based on a general result describing when the composition of an arbitrary linearized polynomial and a monomial of the form x~(1+2a) is almost perfect nonlinear. It turns out that almost perfect nonlinear functions derived from reversed Dickson polynomials are all extended affine equivalent to the well-known Gold functions.
Language英语
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/45817
Collection系统科学研究所
Affiliation1.中国科学院数学与系统科学研究院
2.中国科学院信息工程研究所
Recommended Citation
GB/T 7714
Zhang Xiaoming,Wu Baofeng,Liu Zhuojun. dembowskiostrompolynomialsfromreverseddicksonpolynomials[J]. journalofsystemsscienceandcomplexity,2016,29(1):259.
APA Zhang Xiaoming,Wu Baofeng,&Liu Zhuojun.(2016).dembowskiostrompolynomialsfromreverseddicksonpolynomials.journalofsystemsscienceandcomplexity,29(1),259.
MLA Zhang Xiaoming,et al."dembowskiostrompolynomialsfromreverseddicksonpolynomials".journalofsystemsscienceandcomplexity 29.1(2016):259.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Zhang Xiaoming]'s Articles
[Wu Baofeng]'s Articles
[Liu Zhuojun]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhang Xiaoming]'s Articles
[Wu Baofeng]'s Articles
[Liu Zhuojun]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhang Xiaoming]'s Articles
[Wu Baofeng]'s Articles
[Liu Zhuojun]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.