KMS Of Academy of mathematics and systems sciences, CAS
Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind | |
Liu, Fang; Zhou, Aihui![]() | |
2007 | |
发表期刊 | SIAM JOURNAL ON NUMERICAL ANALYSIS
![]() |
ISSN | 0036-1429 |
卷号 | 45期号:1页码:296-312 |
摘要 | In this paper, some two-scale Boolean Galerkin discretizations are proposed and analyzed for a class of Fredholm integral equations of the second kind in multidimensions. It is shown by both theory and numerics that this type of multiscale discretization algorithm not only significantly reduces the number of degrees of freedom but also produces very accurate approximations. |
关键词 | Boolean Galerkin discretization Fredholm integral equation multidimension two-scale |
DOI | 10.1137/050633007 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000244631600015 |
出版者 | SIAM PUBLICATIONS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/4424 |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Liu, Fang |
作者单位 | 1.Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Fang,Zhou, Aihui. Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS,2007,45(1):296-312. |
APA | Liu, Fang,&Zhou, Aihui.(2007).Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind.SIAM JOURNAL ON NUMERICAL ANALYSIS,45(1),296-312. |
MLA | Liu, Fang,et al."Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind".SIAM JOURNAL ON NUMERICAL ANALYSIS 45.1(2007):296-312. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Fang]的文章 |
[Zhou, Aihui]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Fang]的文章 |
[Zhou, Aihui]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Fang]的文章 |
[Zhou, Aihui]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论