KMS Of Academy of mathematics and systems sciences, CAS
Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm | |
Guo,Yanni; Cui,Wei | |
2018-05-02 | |
发表期刊 | Journal of Inequalities and Applications
![]() |
ISSN | 1029-242X |
卷号 | 2018期号:1 |
摘要 | AbstractThe proximal gradient algorithm is an appealing approach in finding solutions of non-smooth composite optimization problems, which may only has weak convergence in the infinite-dimensional setting. In this paper, we introduce a modified proximal gradient algorithm with outer perturbations in Hilbert space and prove that the algorithm converges strongly to a solution of the composite optimization problem. We also discuss the bounded perturbation resilience of the basic algorithm of this iterative scheme and illustrate it with an application. |
关键词 | Strong convergence Bounded perturbation resilience Modified proximal gradient algorithm Viscosity approximation Convex minimization problem |
DOI | 10.1186/s13660-018-1695-x |
语种 | 英语 |
WOS记录号 | BMC:10.1186/s13660-018-1695-x |
出版者 | Springer International Publishing |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/417 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Guo,Yanni |
作者单位 | |
推荐引用方式 GB/T 7714 | Guo,Yanni,Cui,Wei. Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm[J]. Journal of Inequalities and Applications,2018,2018(1). |
APA | Guo,Yanni,&Cui,Wei.(2018).Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm.Journal of Inequalities and Applications,2018(1). |
MLA | Guo,Yanni,et al."Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm".Journal of Inequalities and Applications 2018.1(2018). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Guo,Yanni]的文章 |
[Cui,Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Guo,Yanni]的文章 |
[Cui,Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Guo,Yanni]的文章 |
[Cui,Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论