| newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows | |
Sun Xiaowei1; Wang Youde2
| |
| 2014 | |
| 发表期刊 | sciencechinamathematics
![]() |
| ISSN | 1674-7283 |
| 卷号 | 57期号:11页码:2247 |
| 摘要 | In this paper, a class of new geometric flows on a complete Riemannian manifold is defined. The new flow is related to the generalized (third order) Landau-Lifshitz equation. On the other hand it could be thought of as a special case of the Schrodinger-Airy flow when the target manifold is a Kahler manifold with constant holomorphic sectional curvature. We show the local existence of the new flow on a complete Riemannian manifold with some assumptions on Ricci tensor. Moreover, if the target manifolds are Einstein or some certain type of locally symmetric spaces, the global results are obtained. |
| 语种 | 英语 |
| 资助项目 | [National Natural Science Foundation of China] |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/39541 |
| 专题 | 数学所 |
| 作者单位 | 1.中央财经大学 2.中国科学院数学与系统科学研究院 |
| 推荐引用方式 GB/T 7714 | Sun Xiaowei,Wang Youde. newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows[J]. sciencechinamathematics,2014,57(11):2247. |
| APA | Sun Xiaowei,&Wang Youde.(2014).newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows.sciencechinamathematics,57(11),2247. |
| MLA | Sun Xiaowei,et al."newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows".sciencechinamathematics 57.11(2014):2247. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Sun Xiaowei]的文章 |
| [Wang Youde]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Sun Xiaowei]的文章 |
| [Wang Youde]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Sun Xiaowei]的文章 |
| [Wang Youde]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论