newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows | |
Sun Xiaowei1; Wang Youde2![]() | |
2014 | |
Source Publication | sciencechinamathematics
![]() |
ISSN | 1674-7283 |
Volume | 57Issue:11Pages:2247 |
Abstract | In this paper, a class of new geometric flows on a complete Riemannian manifold is defined. The new flow is related to the generalized (third order) Landau-Lifshitz equation. On the other hand it could be thought of as a special case of the Schrodinger-Airy flow when the target manifold is a Kahler manifold with constant holomorphic sectional curvature. We show the local existence of the new flow on a complete Riemannian manifold with some assumptions on Ricci tensor. Moreover, if the target manifolds are Einstein or some certain type of locally symmetric spaces, the global results are obtained. |
Language | 英语 |
Funding Project | [National Natural Science Foundation of China] |
Document Type | 期刊论文 |
Identifier | http://ir.amss.ac.cn/handle/2S8OKBNM/39541 |
Collection | 数学所 |
Affiliation | 1.中央财经大学 2.中国科学院数学与系统科学研究院 |
Recommended Citation GB/T 7714 | Sun Xiaowei,Wang Youde. newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows[J]. sciencechinamathematics,2014,57(11):2247. |
APA | Sun Xiaowei,&Wang Youde.(2014).newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows.sciencechinamathematics,57(11),2247. |
MLA | Sun Xiaowei,et al."newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows".sciencechinamathematics 57.11(2014):2247. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment