CSpace
Galerkin methods based on hermite splines for singular perturbation problems
Liu, ST; Xu, YS
2006
发表期刊SIAM JOURNAL ON NUMERICAL ANALYSIS
ISSN0036-1429
卷号43期号:6页码:2607-2623
摘要We develop Galerkin methods for solving the singularly perturbed two-point boundary value problem of high-order elliptic differential equations. These methods are based on Hermite splines with knots adapted to the singular behavior of the solution of the problem. We prove an optimal order of uniform convergence for the method with respect to the perturbation parameter. Specifically, we present a sufficient condition on the mesh of grid points that ensures the corresponding approximate solution has the optimal order of uniform convergence in the energy norm. We also construct optimal meshes that satisfy the sufficient condition. Numerical examples are presented to illustrate the method and the corresponding theoretical estimates.
关键词singular perturbation Galerkin methods Hermite splines grid meshes optimal order of uniform convergence
DOI10.1137/040607411
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000235426500016
出版者SIAM PUBLICATIONS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/3759
专题中国科学院数学与系统科学研究院
通讯作者Liu, ST
作者单位1.Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Liu, ST,Xu, YS. Galerkin methods based on hermite splines for singular perturbation problems[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS,2006,43(6):2607-2623.
APA Liu, ST,&Xu, YS.(2006).Galerkin methods based on hermite splines for singular perturbation problems.SIAM JOURNAL ON NUMERICAL ANALYSIS,43(6),2607-2623.
MLA Liu, ST,et al."Galerkin methods based on hermite splines for singular perturbation problems".SIAM JOURNAL ON NUMERICAL ANALYSIS 43.6(2006):2607-2623.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, ST]的文章
[Xu, YS]的文章
百度学术
百度学术中相似的文章
[Liu, ST]的文章
[Xu, YS]的文章
必应学术
必应学术中相似的文章
[Liu, ST]的文章
[Xu, YS]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。