CSpace  > 应用数学研究所
neighborsumdistinguishingtotalcoloringsviathecombinatorialnullstellensatz
Ding Laihao1; Wang Guanghui1; Yan Guiying2
2014
发表期刊sciencechinamathematics
ISSN1674-7283
卷号57期号:9页码:1875
摘要Let G = (V E) be a graph and i be a total coloring of G by using the color set {1,2,...,k} Let f(v) denote the sum of the color of the vertex v and the colors of all incident edges of v. We say that phi is neighbor sum distinguishing if for each edge uv is an element of E(G), f(u) not equal f(v). The smallest number k is called the neighbor sum distinguishing total chromatic number, denoted by chi(nsd)''(G). Pilsniak and Wozniak conjectured that for any graph G with at least two vertices, chi(nsd)''(G) <= Delta(G) + 3. In this paper, by using the famous Combinatorial Nullstellensatz, we show that chi(nsd)''(G) <= 2 Delta (G) + col(G) - 1, where col(G) is the coloring number of G. Moreover, we prove this assertion in its list version.
语种英语
资助项目[National Natural Science Foundation of China] ; [Research Fund for the Doctoral Program of higher Education of China] ; [Scientific Research Foundation for the Excellent Middle Aged and Youth Scientists of Shandong Province of China]
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/37541
专题应用数学研究所
作者单位1.山东大学
2.中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Ding Laihao,Wang Guanghui,Yan Guiying. neighborsumdistinguishingtotalcoloringsviathecombinatorialnullstellensatz[J]. sciencechinamathematics,2014,57(9):1875.
APA Ding Laihao,Wang Guanghui,&Yan Guiying.(2014).neighborsumdistinguishingtotalcoloringsviathecombinatorialnullstellensatz.sciencechinamathematics,57(9),1875.
MLA Ding Laihao,et al."neighborsumdistinguishingtotalcoloringsviathecombinatorialnullstellensatz".sciencechinamathematics 57.9(2014):1875.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ding Laihao]的文章
[Wang Guanghui]的文章
[Yan Guiying]的文章
百度学术
百度学术中相似的文章
[Ding Laihao]的文章
[Wang Guanghui]的文章
[Yan Guiying]的文章
必应学术
必应学术中相似的文章
[Ding Laihao]的文章
[Wang Guanghui]的文章
[Yan Guiying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。