CSpace
schrodingersolitonfromlorentzianmanifolds
Chong SONG1; You De WANG2
2011
Source Publicationactamathematicasinicaenglishseries
ISSN1439-8516
Volume27Issue:8Pages:1455
AbstractIn this paper,we introduce a new notion named as Schrodinger soliton.The so-called Schrodinger solitons are a class of solitary wave solutions to the Schrodinger flow equation from a Riemannian manifold or a Lorentzian manifold M into a Kahler manifold N.If the target manifold N admits a Killing potential,then the Schrodinger soliton reduces to a harmonic map with potential from M into N.Especially,when the domain manifold M is a Lorentzian manifold,the Schrodinger soliton is a wave map with potential into N.Then we apply the geometric energy method to this wave map system,and obtain the local well-posedness of the corresponding Cauchy problem as well as global existence in 1 + 1 dimension.As an application,we obtain the existence of SchrSdinger soliton solution to the hyperbolic Ishimori system.
Language英语
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/36672
Collection中国科学院数学与系统科学研究院
Affiliation1.LMAM,School of Mathematical Sciences,Peking University
2.中国科学院数学与系统科学研究院
Recommended Citation
GB/T 7714
Chong SONG,You De WANG. schrodingersolitonfromlorentzianmanifolds[J]. actamathematicasinicaenglishseries,2011,27(8):1455.
APA Chong SONG,&You De WANG.(2011).schrodingersolitonfromlorentzianmanifolds.actamathematicasinicaenglishseries,27(8),1455.
MLA Chong SONG,et al."schrodingersolitonfromlorentzianmanifolds".actamathematicasinicaenglishseries 27.8(2011):1455.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Chong SONG]'s Articles
[You De WANG]'s Articles
Baidu academic
Similar articles in Baidu academic
[Chong SONG]'s Articles
[You De WANG]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Chong SONG]'s Articles
[You De WANG]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.