CSpace
On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform
Guo, BZ; Zwart, H
2006-03-01
发表期刊INTEGRAL EQUATIONS AND OPERATOR THEORY
ISSN0378-620X
卷号54期号:3页码:349-383
摘要In this paper we investigate and compare the properties of the semigroup generated by A, and the sequence A(d)(n), n is an element of N, where A(d) = (I + A)(I - A)(-1). We show that if A and A(-1) generate a uniformly bounded, strongly continuous semigroup on a Hilbert space, then Ad is power bounded. For analytic semigroups we can prove stronger results. If A is the infinitesimal generator of an analytic semigroup, then power boundedness of A(d) is equivalent to the uniform boundedness of the semigroup generated by A.
关键词abstract differential equations infinite-dimensional systems discrete time continuous time stability Lyapunov equations
DOI10.1007/s00020-003-1350-9
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000236243500004
出版者BIRKHAUSER VERLAG AG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/3567
专题中国科学院数学与系统科学研究院
通讯作者Guo, BZ
作者单位1.Acad Sinica, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
2.Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
推荐引用方式
GB/T 7714
Guo, BZ,Zwart, H. On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform[J]. INTEGRAL EQUATIONS AND OPERATOR THEORY,2006,54(3):349-383.
APA Guo, BZ,&Zwart, H.(2006).On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform.INTEGRAL EQUATIONS AND OPERATOR THEORY,54(3),349-383.
MLA Guo, BZ,et al."On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform".INTEGRAL EQUATIONS AND OPERATOR THEORY 54.3(2006):349-383.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, BZ]的文章
[Zwart, H]的文章
百度学术
百度学术中相似的文章
[Guo, BZ]的文章
[Zwart, H]的文章
必应学术
必应学术中相似的文章
[Guo, BZ]的文章
[Zwart, H]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。