CSpace  > 系统科学研究所
An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization
Liu Ao1,2,3; Deng Xudong1,2,3; Ren Liang1,2,3; Liu Ying4; Liu Bo5
2019-04-01
发表期刊JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
ISSN1009-6124
卷号32期号:2页码:634-656
摘要As a novel population-based optimization algorithm, fruit fly optimization (FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence. In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism (IPGS) is introduced to enhance local exploitation. Moreover, a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate.
关键词Evolutionary algorithms fruit fly optimization function optimization meta-heuristics
DOI10.1007/s11424-018-7250-5
语种英语
资助项目National Natural Science Foundation of China[71701156] ; National Natural Science Foundation of China[71390331] ; National Natural Science Foundation of China[71690242] ; Natural Science Foundation of Hubei Province of China[2017CFB427] ; Key Research Program of Frontier Sciences for Chinese Academy of Sciences[QYZDB-SSW-SYS020] ; Humanity and Social Science Youth Foundation of Ministry of Education of China[16YJCZH056] ; Hubei Province Department of Education Humanities and Social Sciences Research Project[17Q034] ; Open Funding of Center for Service Science and Engineering, Wuhan University of Science and Technology[CSSE2017KA01] ; Open Funding of Intelligent Information Processing and Real-time Industrial System[2016znss18B] ; Young Incubation Program of Wuhan University of Science and Technology[2016xz017] ; Young Incubation Program of Wuhan University of Science and Technology[2017xz031]
WOS研究方向Mathematics
WOS类目Mathematics, Interdisciplinary Applications
WOS记录号WOS:000462987000012
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/34353
专题系统科学研究所
通讯作者Liu Bo
作者单位1.Wuhan Univ Sci & Technol, Sch Management, Wuhan 430065, Hubei, Peoples R China
2.Wuhan Univ Sci & Technol, Ctr Serv Sci & Engn, Wuhan 430065, Hubei, Peoples R China
3.Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Hubei, Peoples R China
4.Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
5.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu Ao,Deng Xudong,Ren Liang,et al. An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2019,32(2):634-656.
APA Liu Ao,Deng Xudong,Ren Liang,Liu Ying,&Liu Bo.(2019).An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,32(2),634-656.
MLA Liu Ao,et al."An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 32.2(2019):634-656.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu Ao]的文章
[Deng Xudong]的文章
[Ren Liang]的文章
百度学术
百度学术中相似的文章
[Liu Ao]的文章
[Deng Xudong]的文章
[Ren Liang]的文章
必应学术
必应学术中相似的文章
[Liu Ao]的文章
[Deng Xudong]的文章
[Ren Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。