CSpace
基于事件相关电位erps和机器学习的考试焦虑诊断
章文佩1; 沈群伦2; 宋锦涛1; 周仁来1
2019
Source Publication心理学报
ISSN0439-755X
Volume51Issue:10Pages:1116
Abstract考试焦虑对个体的身心具有严重危害。传统诊断考试焦虑的方法容易受到个体主观态度的影响,从而影响对个体考试焦虑的发现与及早干预。为了克服传统主观问卷对考试焦虑群体诊断的不足,本研究提出脑电神经数据结合机器学习的客观综合诊断方法评估个体的考试焦虑水平。研究采用情绪Stroop范式,结合脑电技术测量个体对考试焦虑者的注意抑制功能,机器学习基于此前提,提取P1,P2,N2,P3和LPP五种事件相关电位(ERP)成分,以卷积神经网络(CNN)为主采用7种常见的机器学习算法对个体考试焦虑程度进行进一步的诊断。结果表明CNN对考试焦虑诊断的准确率达86.5%,F1-score为0.911,显著高于其他6种常见算法。因此采用CNN对脑电信号进行深度学习得出的诊断模型能够有效地对个体的考试焦虑程度进行诊断。
Language英语
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/33396
Collection中国科学院数学与系统科学研究院
Affiliation1.南京大学
2.中国科学院数学与系统科学研究院
Recommended Citation
GB/T 7714
章文佩,沈群伦,宋锦涛,等. 基于事件相关电位erps和机器学习的考试焦虑诊断[J]. 心理学报,2019,51(10):1116.
APA 章文佩,沈群伦,宋锦涛,&周仁来.(2019).基于事件相关电位erps和机器学习的考试焦虑诊断.心理学报,51(10),1116.
MLA 章文佩,et al."基于事件相关电位erps和机器学习的考试焦虑诊断".心理学报 51.10(2019):1116.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[章文佩]'s Articles
[沈群伦]'s Articles
[宋锦涛]'s Articles
Baidu academic
Similar articles in Baidu academic
[章文佩]'s Articles
[沈群伦]'s Articles
[宋锦涛]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[章文佩]'s Articles
[沈群伦]'s Articles
[宋锦涛]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.