CSpace  > 数学所
Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities
Li,Suhong1,2; Ding,Yanheng2; Chen,Yu2
2015-12-24
发表期刊Boundary Value Problems
ISSN1687-2770
卷号2015期号:1
摘要AbstractWe study the following nonlocal Schr?dinger equations: Iε2s(?Δ)su+V(x)u=W(x)f(u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& \varepsilon^{2s}(-\Delta)^{s}u+V(x)u=W(x)f(u), \end{aligned}$$ \end{document}IIε2s(?Δ)su+V(x)u=W(x)(f(u)+u2s??1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& \varepsilon^{2s}(-\Delta)^{s}u+V(x)u=W(x) \bigl(f(u)+u^{2^{*}_{s}-1}\bigr), \end{aligned}$$ \end{document} for u∈Hs(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u\in H^{s}( \mathbb{R}^{N})$\end{document}, where f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)$\end{document} is superlinear and subcritical, 2s?=2NN?2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{*}_{s}= \frac{2N}{N-2s}$\end{document} if N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N>2s$\end{document}. V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} and W(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W(x)$\end{document} are sufficiently smooth potential with infV(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf V(x)>0$\end{document}, infW(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf W(x)>0$\end{document}, and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon>0$\end{document} is a small number. Under proper assumptions, we explore the existence, concentration phenomenon, convergence, and decay estimate of semiclassical solutions of (I) and (II), respectively. Compared with some existing issues, the most interesting results obtained here are therefore: the concentration phenomenon depends on competing potential functions; the nonlocal critical problem (II) is considered; unlike the classical case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s=1$\end{document}, the decay estimate of solution to (I) or (II) is of polynomial instead of exponential form, due to the nonlocal effect.
关键词ground state concentration standing waves nonlocal 35Q40 49J35
DOI10.1186/s13661-015-0507-1
语种英语
WOS记录号BMC:10.1186/s13661-015-0507-1
出版者Springer International Publishing
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/303
专题数学所
通讯作者Li,Suhong
作者单位1.Hebei Normal University of Science and Technology; Institute of Mathematics and Information Technology
2.Chinese Academy of Sciences; Institute of Mathematics, Academy of Mathematics and Systems Science
推荐引用方式
GB/T 7714
Li,Suhong,Ding,Yanheng,Chen,Yu. Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities[J]. Boundary Value Problems,2015,2015(1).
APA Li,Suhong,Ding,Yanheng,&Chen,Yu.(2015).Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities.Boundary Value Problems,2015(1).
MLA Li,Suhong,et al."Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities".Boundary Value Problems 2015.1(2015).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li,Suhong]的文章
[Ding,Yanheng]的文章
[Chen,Yu]的文章
百度学术
百度学术中相似的文章
[Li,Suhong]的文章
[Ding,Yanheng]的文章
[Chen,Yu]的文章
必应学术
必应学术中相似的文章
[Li,Suhong]的文章
[Ding,Yanheng]的文章
[Chen,Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。