KMS Of Academy of mathematics and systems sciences, CAS
Improved Bounds on the Generalized Acyclic Chromatic Number | |
Wu Yuwen1; Tan Kanran2; Yan Guiying3![]() | |
2016 | |
发表期刊 | Acta Mathematicae Applicatae Sinica
![]() |
ISSN | 0168-9673 |
卷号 | 32期号:1页码:67 |
摘要 | An r-acyclic edge chromatic number of a graph G, denoted by a'_r(G), is the minimum number of colors used to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min {|C|,r} colors. We prove that a'_r(G) ≤ (4r + 1)Δ(G), when the girth of the graph G equals to max{50, Δ(G)} and 4 ≤ r ≤ 7. If we relax the restriction of the girth to max {220, Δ(G)}, the upper bound of a'_r(G) is not larger than (2r + 5)Δ(G) with 4 ≤ r ≤ 10. |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/22436 |
专题 | 应用数学研究所 |
作者单位 | 1.北京物资学院 2.约翰·霍普金斯大学 3.中国科学院数学与系统科学研究院 |
推荐引用方式 GB/T 7714 | Wu Yuwen,Tan Kanran,Yan Guiying. Improved Bounds on the Generalized Acyclic Chromatic Number[J]. Acta Mathematicae Applicatae Sinica,2016,32(1):67. |
APA | Wu Yuwen,Tan Kanran,&Yan Guiying.(2016).Improved Bounds on the Generalized Acyclic Chromatic Number.Acta Mathematicae Applicatae Sinica,32(1),67. |
MLA | Wu Yuwen,et al."Improved Bounds on the Generalized Acyclic Chromatic Number".Acta Mathematicae Applicatae Sinica 32.1(2016):67. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论