CSpace  > 应用数学研究所
Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations
Cao, Daomin; Li, Shuanglong; Luo, Peng
2015-12-01
发表期刊CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
ISSN0944-2669
卷号54期号:4页码:4037-4063
摘要We are concerned with the following nonlinear Schrodinger equation where, For small enough and a class of V(x), we show the uniqueness of positive multi-bump solutions concentrating at k different critical points of V(x) under certain assumptions on asymptotic behavior of V(x) and its first derivatives near those points. Especially, the degeneracy of critical points is allowed in this paper.
DOI10.1007/s00526-015-0930-2
语种英语
资助项目Beijing Center for Mathematics and Information Interdisciplinary Sciences ; NSFC[11271354] ; NSFC[11331010] ; China Postdoctoral Science Foundation[2015M571144]
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000365412700025
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/21326
专题应用数学研究所
通讯作者Luo, Peng
作者单位Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cao, Daomin,Li, Shuanglong,Luo, Peng. Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations[J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS,2015,54(4):4037-4063.
APA Cao, Daomin,Li, Shuanglong,&Luo, Peng.(2015).Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations.CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS,54(4),4037-4063.
MLA Cao, Daomin,et al."Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations".CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS 54.4(2015):4037-4063.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Daomin]的文章
[Li, Shuanglong]的文章
[Luo, Peng]的文章
百度学术
百度学术中相似的文章
[Cao, Daomin]的文章
[Li, Shuanglong]的文章
[Luo, Peng]的文章
必应学术
必应学术中相似的文章
[Cao, Daomin]的文章
[Li, Shuanglong]的文章
[Luo, Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。