CSpace
Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data
Chen, Gui-Qiang G.1,2; Perepelitsa, Mikhail3
2015-09-01
发表期刊COMMUNICATIONS IN MATHEMATICAL PHYSICS
ISSN0010-3616
卷号338期号:2页码:771-800
摘要We are concerned with spherically symmetric solutions of the Euler equations for multidimensional compressible fluids, which are motivated by many important physical situations. Various evidences indicate that spherically symmetric solutions of the compressible Euler equations may blow up near the origin at a certain time under some circumstance. The central feature is the strengthening of waves as they move radially inward. A longstanding open, fundamental problem is whether concentration could be formed at the origin. In this paper, we develop a method of vanishing viscosity and related estimate techniques for viscosity approximate solutions, and establish the convergence of the approximate solutions to a global finite-energy entropy solution of the isentropic Euler equations with spherical symmetry and large initial data. This indicates that concentration is not formed in the vanishing viscosity limit, even though the density may blow up at a certain time. To achieve this, we first construct global smooth solutions of appropriate initial-boundary value problems for the Euler equations with designed viscosity terms, approximate pressure function, and boundary conditions, and then we establish the strong convergence of the viscosity approximate solutions to a finite-energy entropy solution of the Euler equations.
DOI10.1007/s00220-015-2376-y
语种英语
资助项目UK EPSRC Science and Innovation Award[EP/E035027/1] ; UK EPSRC Award[EP/L015811/1] ; NSFC[10728101] ; Royal Society-Wolfson Research Merit Award (UK) ; NSF[DMS-1108048] ; Isaac Newton Institute for Mathematical Sciences, Cambridge
WOS研究方向Physics
WOS类目Physics, Mathematical
WOS记录号WOS:000357580400011
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/20287
专题中国科学院数学与系统科学研究院
通讯作者Chen, Gui-Qiang G.
作者单位1.Univ Oxford, Math Inst, Radcliffe Observ Quarter, Oxford OX2 6GG, England
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
3.Univ Houston, Dept Math, Houston, TX 77204 USA
推荐引用方式
GB/T 7714
Chen, Gui-Qiang G.,Perepelitsa, Mikhail. Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data[J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS,2015,338(2):771-800.
APA Chen, Gui-Qiang G.,&Perepelitsa, Mikhail.(2015).Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data.COMMUNICATIONS IN MATHEMATICAL PHYSICS,338(2),771-800.
MLA Chen, Gui-Qiang G.,et al."Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data".COMMUNICATIONS IN MATHEMATICAL PHYSICS 338.2(2015):771-800.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Gui-Qiang G.]的文章
[Perepelitsa, Mikhail]的文章
百度学术
百度学术中相似的文章
[Chen, Gui-Qiang G.]的文章
[Perepelitsa, Mikhail]的文章
必应学术
必应学术中相似的文章
[Chen, Gui-Qiang G.]的文章
[Perepelitsa, Mikhail]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。