KMS Of Academy of mathematics and systems sciences, CAS
Occupation time processes of super-Brownian motion with cut-off branching | |
Dong, Z![]() | |
2004-12-01 | |
发表期刊 | JOURNAL OF APPLIED PROBABILITY
![]() |
ISSN | 0021-9002 |
卷号 | 41期号:4页码:984-997 |
摘要 | In this article we investigate a class of superprocess with cut-off branching, studying the long-time behavior of the occupation time process. Persistence of the process holds in all dimensions. Central-limit-type theorems are obtained, and the scales are dimension dependent. The Gaussian limit holds only when d less than or equal to 4. In dimension one, a full large deviation principle is established and the rate function is identified explicitly. Our result shows that the super-Brownian motion with cut-off branching in dimension one has many features that are similar to super-Brownian motion in dimension three. |
关键词 | Super-Brownian motion occupation time process large deviation |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000225984300005 |
出版者 | APPLIED PROBABILITY TRUST |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/19643 |
专题 | 应用数学研究所 |
通讯作者 | Dong, Z |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada |
推荐引用方式 GB/T 7714 | Dong, Z,Feng, S. Occupation time processes of super-Brownian motion with cut-off branching[J]. JOURNAL OF APPLIED PROBABILITY,2004,41(4):984-997. |
APA | Dong, Z,&Feng, S.(2004).Occupation time processes of super-Brownian motion with cut-off branching.JOURNAL OF APPLIED PROBABILITY,41(4),984-997. |
MLA | Dong, Z,et al."Occupation time processes of super-Brownian motion with cut-off branching".JOURNAL OF APPLIED PROBABILITY 41.4(2004):984-997. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Dong, Z]的文章 |
[Feng, S]的文章 |
百度学术 |
百度学术中相似的文章 |
[Dong, Z]的文章 |
[Feng, S]的文章 |
必应学术 |
必应学术中相似的文章 |
[Dong, Z]的文章 |
[Feng, S]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论