KMS Of Academy of mathematics and systems sciences, CAS
An h-based A-phi method with a nonmatching grid for eddy current problem with discontinuous coefficients | |
Kang, T; Wu, ZP; Yu, DH | |
2004-11-01 | |
发表期刊 | JOURNAL OF COMPUTATIONAL MATHEMATICS
![]() |
ISSN | 0254-9409 |
卷号 | 22期号:6页码:881-894 |
摘要 | In this paper, we investigate the finite element A - phi method to approximate the eddy current equations with discontinuous coefficients in general three-dimensional Lipschitz polyhedral eddy current region. Nonmatching finite element meshes on the interface are considered and optimal error estimates are obtained. |
关键词 | eddy current problem finite element A-phi method nomnatching meshes error estimates |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000225350200010 |
出版者 | VSP BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/19556 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Kang, T |
作者单位 | 1.Beijing Broadcasting Inst, Dept Math Appl, Sch Sci, Beijing 100024, Peoples R China 2.Chinese Acad Sci, ICMSEC, Acad Math & Syst Sci, LSEC, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Kang, T,Wu, ZP,Yu, DH. An h-based A-phi method with a nonmatching grid for eddy current problem with discontinuous coefficients[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2004,22(6):881-894. |
APA | Kang, T,Wu, ZP,&Yu, DH.(2004).An h-based A-phi method with a nonmatching grid for eddy current problem with discontinuous coefficients.JOURNAL OF COMPUTATIONAL MATHEMATICS,22(6),881-894. |
MLA | Kang, T,et al."An h-based A-phi method with a nonmatching grid for eddy current problem with discontinuous coefficients".JOURNAL OF COMPUTATIONAL MATHEMATICS 22.6(2004):881-894. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Kang, T]的文章 |
[Wu, ZP]的文章 |
[Yu, DH]的文章 |
百度学术 |
百度学术中相似的文章 |
[Kang, T]的文章 |
[Wu, ZP]的文章 |
[Yu, DH]的文章 |
必应学术 |
必应学术中相似的文章 |
[Kang, T]的文章 |
[Wu, ZP]的文章 |
[Yu, DH]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论