KMS Of Academy of mathematics and systems sciences, CAS
| A note on unicyclic representations of phase type distributions | |
He, QM; Zhang, HQ
| |
| 2005 | |
| 发表期刊 | STOCHASTIC MODELS
![]() |
| ISSN | 1532-6349 |
| 卷号 | 21期号:2-3页码:465-483 |
| 摘要 | In this note, we study the unicyclic representation introduced in O'Cinneide([21]). First, we present a counterexample to the conjecture that every PH-representation has an equivalent unicyclic representation of the same order. Then we show that the conjecture holds if the order of the PH-representation is 3. We also introduce an algorithm for computing a unicyclic generator of order 3, which PH-majorizes the original PH-generator, for any PH-generator of order 3. For the general case, we develop a nonlinear program for computing unicyclic representations for PH-distributions. |
| 关键词 | matrix analytic methods phase type distribution probability distribution |
| DOI | 10.1081/STM-200057131 |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Statistics & Probability |
| WOS记录号 | WOS:000230199400012 |
| 出版者 | TAYLOR & FRANCIS INC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/1936 |
| 专题 | 应用数学研究所 |
| 通讯作者 | He, QM |
| 作者单位 | 1.Dalhousie Univ, Dept Ind Engn, Halifax, NS B3J 2X4, Canada 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China |
| 推荐引用方式 GB/T 7714 | He, QM,Zhang, HQ. A note on unicyclic representations of phase type distributions[J]. STOCHASTIC MODELS,2005,21(2-3):465-483. |
| APA | He, QM,&Zhang, HQ.(2005).A note on unicyclic representations of phase type distributions.STOCHASTIC MODELS,21(2-3),465-483. |
| MLA | He, QM,et al."A note on unicyclic representations of phase type distributions".STOCHASTIC MODELS 21.2-3(2005):465-483. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [He, QM]的文章 |
| [Zhang, HQ]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [He, QM]的文章 |
| [Zhang, HQ]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [He, QM]的文章 |
| [Zhang, HQ]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论