CSpace
Tridiagonal normal forms for orthogonal similarity classes of symmetric matrices
Dokovic, DZ; Zhao, KM
2004-06-01
发表期刊LINEAR ALGEBRA AND ITS APPLICATIONS
ISSN0024-3795
卷号384页码:77-84
摘要Let F be an algebraically closed field of characteristic different from 2. Define the orthogonal group, O-n (F), as the group of n by n matrices X over F such that XX' = I-n, where X' is the transpose of X and In the identity matrix. We show that every n by n symmetric matrix over F is orthogonally similar to a tridiagonal symmetric matrix. If further the characteristic is 0, we construct the tridiagonal normal form for the O-n (F)- similarity classes of symmetric matrices. We point out that, in this case, the known normal forms (as presented in the well known book by Gantmacher) are not tridiagonal. (C) 2004 Elsevier Inc. All rights reserved.
关键词orthogonal group symmetric matrices tridiagonal matrices symmetrized Jordan blocks
DOI10.1016/j.laa.2003.12.038
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000221592100006
出版者ELSEVIER SCIENCE INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/19143
专题中国科学院数学与系统科学研究院
通讯作者Dokovic, DZ
作者单位1.Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
2.Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Dokovic, DZ,Zhao, KM. Tridiagonal normal forms for orthogonal similarity classes of symmetric matrices[J]. LINEAR ALGEBRA AND ITS APPLICATIONS,2004,384:77-84.
APA Dokovic, DZ,&Zhao, KM.(2004).Tridiagonal normal forms for orthogonal similarity classes of symmetric matrices.LINEAR ALGEBRA AND ITS APPLICATIONS,384,77-84.
MLA Dokovic, DZ,et al."Tridiagonal normal forms for orthogonal similarity classes of symmetric matrices".LINEAR ALGEBRA AND ITS APPLICATIONS 384(2004):77-84.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dokovic, DZ]的文章
[Zhao, KM]的文章
百度学术
百度学术中相似的文章
[Dokovic, DZ]的文章
[Zhao, KM]的文章
必应学术
必应学术中相似的文章
[Dokovic, DZ]的文章
[Zhao, KM]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。