CSpace
Convergence theorems for parallel multisplitting two-stage iterative methods for mildly-nonlinear systems
Bai, ZZ; Wang, CL
2003-03-15
发表期刊LINEAR ALGEBRA AND ITS APPLICATIONS
ISSN0024-3795
卷号362页码:237-250
摘要For the system of mildly nonlinear equations, Ax = F(x), where A is an element of R-nxn is an n-by-n sparse real matrix and F : R-n --> R-n a general nonlinear mapping, both local and global convergence properties of the multisplitting two-stage iterative method (Numer. Algorithms 15 (1997) 347) are further studied in depth when A is an element of R-nxn is symmetric positive definite and its multiple splittings are symmetric P-regular. (C) 2003 Elsevier Science Inc. All rights reserved.
关键词system of mildly nonlinear equations symmetric-positive definiteness symmetric P-regular splitting local and global convergence
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000181154800019
出版者ELSEVIER SCIENCE INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/19074
专题中国科学院数学与系统科学研究院
通讯作者Bai, ZZ
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
2.Taiyuan Teachers Coll, Dept Math, Taiyuan 030012, Shanxi Province, Peoples R China
推荐引用方式
GB/T 7714
Bai, ZZ,Wang, CL. Convergence theorems for parallel multisplitting two-stage iterative methods for mildly-nonlinear systems[J]. LINEAR ALGEBRA AND ITS APPLICATIONS,2003,362:237-250.
APA Bai, ZZ,&Wang, CL.(2003).Convergence theorems for parallel multisplitting two-stage iterative methods for mildly-nonlinear systems.LINEAR ALGEBRA AND ITS APPLICATIONS,362,237-250.
MLA Bai, ZZ,et al."Convergence theorems for parallel multisplitting two-stage iterative methods for mildly-nonlinear systems".LINEAR ALGEBRA AND ITS APPLICATIONS 362(2003):237-250.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bai, ZZ]的文章
[Wang, CL]的文章
百度学术
百度学术中相似的文章
[Bai, ZZ]的文章
[Wang, CL]的文章
必应学术
必应学术中相似的文章
[Bai, ZZ]的文章
[Wang, CL]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。