CSpace
A lack-of-fit test for quantile regression
He, XM; Zhu, LX
2003-12-01
发表期刊JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN0162-1459
卷号98期号:464页码:1013-1022
摘要We propose an omnibus lack-of-fit test for linear or nonlinear quantile regression based on a cusum process of the gradient vector. The test does not involve nonparametric smoothing but is consistent for all nonparametric alternatives without any moment conditions on the regression error. In addition, the test is suitable for detecting the local alternatives of any order arbitrarily close to n(-1/2) from the null hypothesis. The limiting distribution of the proposed test statistic is non-Gaussian but can be characterized by a Gaussian process. We propose a simple sequential resampling scheme to carry out the test whose nominal levels are well approximated in our empirical study for small and modest sample sizes.
关键词consistency cusum process empirical process goodness-of fit linear regression local alternative resampling
DOI10.1198/016214503000000963
语种英语
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000188318600026
出版者AMER STATISTICAL ASSOC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/19065
专题中国科学院数学与系统科学研究院
通讯作者He, XM
作者单位1.Univ Illinois, Dept Stat, Champaign, IL 61820 USA
2.Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
He, XM,Zhu, LX. A lack-of-fit test for quantile regression[J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION,2003,98(464):1013-1022.
APA He, XM,&Zhu, LX.(2003).A lack-of-fit test for quantile regression.JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION,98(464),1013-1022.
MLA He, XM,et al."A lack-of-fit test for quantile regression".JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 98.464(2003):1013-1022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, XM]的文章
[Zhu, LX]的文章
百度学术
百度学术中相似的文章
[He, XM]的文章
[Zhu, LX]的文章
必应学术
必应学术中相似的文章
[He, XM]的文章
[Zhu, LX]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。