CSpace
Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with delays
Xu, R; Chen, LS; Chaplain, MAJ
2003-04-01
发表期刊ACTA MATHEMATICA SCIENTIA
ISSN0252-9602
卷号23期号:2页码:208-218
摘要A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.
关键词nonautonomous Lotka-Volterra competitive system finite and infinite delay global asymptotic stability Lyapunov functional
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000182833300008
出版者KLUWER ACADEMIC PUBL
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/18795
专题中国科学院数学与系统科学研究院
作者单位1.Mech Engn Coll, Dept Math, Shijiazhuang 050003, Peoples R China
2.Acad Sinica, Inst Math, Beijing 100080, Peoples R China
3.Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
推荐引用方式
GB/T 7714
Xu, R,Chen, LS,Chaplain, MAJ. Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with delays[J]. ACTA MATHEMATICA SCIENTIA,2003,23(2):208-218.
APA Xu, R,Chen, LS,&Chaplain, MAJ.(2003).Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with delays.ACTA MATHEMATICA SCIENTIA,23(2),208-218.
MLA Xu, R,et al."Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with delays".ACTA MATHEMATICA SCIENTIA 23.2(2003):208-218.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, R]的文章
[Chen, LS]的文章
[Chaplain, MAJ]的文章
百度学术
百度学术中相似的文章
[Xu, R]的文章
[Chen, LS]的文章
[Chaplain, MAJ]的文章
必应学术
必应学术中相似的文章
[Xu, R]的文章
[Chen, LS]的文章
[Chaplain, MAJ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。