CSpace  > 数学所
Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity
Alves, CO; Ding, YH
2003-03-15
发表期刊JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN0022-247X
卷号279期号:2页码:508-521
摘要In this paper we deal with multiplicity of positive solutions to the p-Laplacian equation of the type -div (\delu\(p-2)delu) = muu(q-1) + u(p*-1), u is an element of W-0(1,p) (Omega), where Omega subset of R-N is a bounded domain, N greater than or equal to p(2), 2 less than or equal to p less than or equal to q < p*, p* = Np/(N - p), and mu is a positive parameter. We prove that there exists mu* > 0 such that, for each mu is an element of (0, mu*), the equation has at least cats? (Q) positive solutions. (C) 2003 Elsevier Science (USA). All rights reserved.
关键词quasilinear elliptic equations p-Laplacian variational methods
DOI10.1016/S0022-247X(03)00026-X
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000182454700012
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/18419
专题数学所
通讯作者Alves, CO
作者单位1.Univ Fed Paraiba, Dept Matemat, BR-58100970 Campina Grande, PB, Brazil
2.Chinese Acad Sci, AMSS, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Alves, CO,Ding, YH. Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2003,279(2):508-521.
APA Alves, CO,&Ding, YH.(2003).Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,279(2),508-521.
MLA Alves, CO,et al."Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 279.2(2003):508-521.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alves, CO]的文章
[Ding, YH]的文章
百度学术
百度学术中相似的文章
[Alves, CO]的文章
[Ding, YH]的文章
必应学术
必应学术中相似的文章
[Alves, CO]的文章
[Ding, YH]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。