KMS Of Academy of mathematics and systems sciences, CAS
An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions | |
Hu, XB; Li, CX; Nimmo, JJC; Yu, GF | |
2005-01-07 | |
发表期刊 | JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
![]() |
ISSN | 0305-4470 |
卷号 | 38期号:1页码:195-204 |
摘要 | A symmetric (2+1)-dimensional Lotka-Volterra equation is proposed. By means of a dependent variable transformation, the equation is firstly transformed into multilinear form and further decoupled into bilinear form by introducing auxiliary independent variables. A bilinear Backlund transformation is found and then the corresponding Lax pair is derived. Explicit solutions expressed in terms of pfaffian solutions of the bilinear form of the symmetric (2+1)-dimensional Lotka-Volterra equation are given. As a special case of the pfaffian solutions, we obtain soliton solutions and dromions. |
语种 | 英语 |
WOS研究方向 | Physics |
WOS类目 | Physics, Multidisciplinary ; Physics, Mathematical |
WOS记录号 | WOS:000226648800017 |
出版者 | IOP PUBLISHING LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/1815 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Hu, XB |
作者单位 | 1.Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China 2.Chinese Acad Sci, Grad Sch, Beijing, Peoples R China 3.Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland |
推荐引用方式 GB/T 7714 | Hu, XB,Li, CX,Nimmo, JJC,et al. An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions[J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL,2005,38(1):195-204. |
APA | Hu, XB,Li, CX,Nimmo, JJC,&Yu, GF.(2005).An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions.JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL,38(1),195-204. |
MLA | Hu, XB,et al."An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions".JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 38.1(2005):195-204. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论