CSpace
Deterministic convergence of an online gradient method for neural networks
Wu, W; Xu, YS
2002-07-01
发表期刊JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN0377-0427
卷号144期号:1-2页码:335-347
摘要The online gradient method has been widely used as a learning algorithm for neural networks. We establish a deterministic convergence of online gradient methods for the training of a class of nonlinear feedforward neural networks when the training examples are linearly independent. We choose the learning rate eta to be a constant during the training procedure. The monotonicity of the error function in the iteration is proved. A criterion for choosing the learning rate eta is also provided to guarantee the convergence. Under certain conditions similar to those for the classical gradient methods, an optimal convergence rate for our online gradient methods is proved. (C) 2001 Elsevier Science B.V. All rights reserved.
关键词online stochastic gradient method nonlinear feedforward neural networks deterministic convergence monotonicity constant learning rate
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000176295300025
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/17736
专题中国科学院数学与系统科学研究院
通讯作者Wu, W
作者单位1.Dalian Univ Technol, Dept Math, Dalian 116023, Peoples R China
2.N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
3.Acad Sinica, Math Inst, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wu, W,Xu, YS. Deterministic convergence of an online gradient method for neural networks[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2002,144(1-2):335-347.
APA Wu, W,&Xu, YS.(2002).Deterministic convergence of an online gradient method for neural networks.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,144(1-2),335-347.
MLA Wu, W,et al."Deterministic convergence of an online gradient method for neural networks".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 144.1-2(2002):335-347.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, W]的文章
[Xu, YS]的文章
百度学术
百度学术中相似的文章
[Wu, W]的文章
[Xu, YS]的文章
必应学术
必应学术中相似的文章
[Wu, W]的文章
[Xu, YS]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。