KMS Of Academy of mathematics and systems sciences, CAS
Self-intersection local time of additive Levy process | |
Zhong, YQ; Hu, DH | |
2002-04-01 | |
发表期刊 | ACTA MATHEMATICA SCIENTIA
![]() |
ISSN | 0252-9602 |
卷号 | 22期号:2页码:261-268 |
摘要 | This article discusses the problem of existence of jointly continuous self-intersection local time for an additive levy process. Here, "local time" is understood in the sense of occupation density, and by an additive Levy process the authors mean a process X = {X(t), t is an element of R-+(N))} which has the decomposition X = X(1)circle plus X(2)circle plus...circle plusX(N), each X-l has the lower index alpha(l),alpha = min{alpha(1),...alpha(N)}. Let Z = (X-t2 - X-t1,...,X-tr - Xt(r-1)). They prove that if Nralpha > d(r - 1), then a jointly continuous local time of Z, i.e. the self-intersection local time of X, can be obtained. |
关键词 | additive Levy process local time self-intersection local time Levy process isotropic stable process |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000175862400015 |
出版者 | KLUWER ACADEMIC PUBL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/17613 |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China 2.Panzhihua Univ, Dept Base, Panzhihua 617000, Peoples R China 3.Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China |
推荐引用方式 GB/T 7714 | Zhong, YQ,Hu, DH. Self-intersection local time of additive Levy process[J]. ACTA MATHEMATICA SCIENTIA,2002,22(2):261-268. |
APA | Zhong, YQ,&Hu, DH.(2002).Self-intersection local time of additive Levy process.ACTA MATHEMATICA SCIENTIA,22(2),261-268. |
MLA | Zhong, YQ,et al."Self-intersection local time of additive Levy process".ACTA MATHEMATICA SCIENTIA 22.2(2002):261-268. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhong, YQ]的文章 |
[Hu, DH]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhong, YQ]的文章 |
[Hu, DH]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhong, YQ]的文章 |
[Hu, DH]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论