CSpace
Infinitely many solutions for Hamiltonian systems
Zou, WM; Li, SJ
2002-11-20
发表期刊JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN0022-0396
卷号186期号:1页码:141-164
摘要We consider two classes of the second-order Hamiltonian systems with symmetry. If the systems are asymptotically linear with resonance, we obtain infinitely many small-energy solutions by minimax technique. If the systems possess sign-changing potential, we also establish an existence theorem of infinitely many solutions by Morse theory. (C) 2002 Elsevier Science (USA). All rights reserved.
关键词Hamiltonian system resonance sign-changing potential Betti number Morse theory
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000179818500007
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/17364
专题中国科学院数学与系统科学研究院
通讯作者Zou, WM
作者单位1.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
2.Acad Sinica, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zou, WM,Li, SJ. Infinitely many solutions for Hamiltonian systems[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2002,186(1):141-164.
APA Zou, WM,&Li, SJ.(2002).Infinitely many solutions for Hamiltonian systems.JOURNAL OF DIFFERENTIAL EQUATIONS,186(1),141-164.
MLA Zou, WM,et al."Infinitely many solutions for Hamiltonian systems".JOURNAL OF DIFFERENTIAL EQUATIONS 186.1(2002):141-164.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zou, WM]的文章
[Li, SJ]的文章
百度学术
百度学术中相似的文章
[Zou, WM]的文章
[Li, SJ]的文章
必应学术
必应学术中相似的文章
[Zou, WM]的文章
[Li, SJ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。