KMS Of Academy of mathematics and systems sciences, CAS
Infinitely many solutions for Hamiltonian systems | |
Zou, WM; Li, SJ | |
2002-11-20 | |
发表期刊 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
ISSN | 0022-0396 |
卷号 | 186期号:1页码:141-164 |
摘要 | We consider two classes of the second-order Hamiltonian systems with symmetry. If the systems are asymptotically linear with resonance, we obtain infinitely many small-energy solutions by minimax technique. If the systems possess sign-changing potential, we also establish an existence theorem of infinitely many solutions by Morse theory. (C) 2002 Elsevier Science (USA). All rights reserved. |
关键词 | Hamiltonian system resonance sign-changing potential Betti number Morse theory |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000179818500007 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/17364 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zou, WM |
作者单位 | 1.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China 2.Acad Sinica, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Zou, WM,Li, SJ. Infinitely many solutions for Hamiltonian systems[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2002,186(1):141-164. |
APA | Zou, WM,&Li, SJ.(2002).Infinitely many solutions for Hamiltonian systems.JOURNAL OF DIFFERENTIAL EQUATIONS,186(1),141-164. |
MLA | Zou, WM,et al."Infinitely many solutions for Hamiltonian systems".JOURNAL OF DIFFERENTIAL EQUATIONS 186.1(2002):141-164. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zou, WM]的文章 |
[Li, SJ]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zou, WM]的文章 |
[Li, SJ]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zou, WM]的文章 |
[Li, SJ]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论