KMS Of Academy of mathematics and systems sciences, CAS
Homoclinic solutions of an infinite-dimensional Hamiltonian system | |
Bartsch, T; Ding, YH | |
2002-06-01 | |
Source Publication | MATHEMATISCHE ZEITSCHRIFT
![]() |
ISSN | 0025-5874 |
Volume | 240Issue:2Pages:289-310 |
Abstract | We consider the system [GRAPHICS] which is an unbounded Hamiltonian system in L-2 (R-N, R-2M). We assume that the constant function (u(o), v(0)) equivalent to (0, 0) is an element of R-2M is a stationary solution, and that H and V are periodic in the t and x variables. We present a variational formulation in order to obtain homoclinic solutions z = (U, V) satisfying z (t, x) --> 0 as \t\ + \x\ --> infinity. It is allowed that V changes sign and that -Delta + V has essential spectrum below (and above) 0. We also treat the case of a bounded domain Omega instead of R-N with Dirichlet boundary conditions. |
DOI | 10.1007/s002090100383 |
Language | 英语 |
WOS Research Area | Mathematics |
WOS Subject | Mathematics |
WOS ID | WOS:000176918100004 |
Publisher | SPRINGER-VERLAG |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.amss.ac.cn/handle/2S8OKBNM/17244 |
Collection | 中国科学院数学与系统科学研究院 |
Corresponding Author | Bartsch, T |
Affiliation | 1.Univ Giessen, Math Inst, D-35392 Giessen, Germany 2.Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China |
Recommended Citation GB/T 7714 | Bartsch, T,Ding, YH. Homoclinic solutions of an infinite-dimensional Hamiltonian system[J]. MATHEMATISCHE ZEITSCHRIFT,2002,240(2):289-310. |
APA | Bartsch, T,&Ding, YH.(2002).Homoclinic solutions of an infinite-dimensional Hamiltonian system.MATHEMATISCHE ZEITSCHRIFT,240(2),289-310. |
MLA | Bartsch, T,et al."Homoclinic solutions of an infinite-dimensional Hamiltonian system".MATHEMATISCHE ZEITSCHRIFT 240.2(2002):289-310. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment