CSpace
Geometry of skew-Hermitian matrices
Huang, LP; Wan, ZX
2005-02-01
发表期刊LINEAR ALGEBRA AND ITS APPLICATIONS
ISSN0024-3795
卷号396页码:127-157
摘要Let D be a division ring with an involution (-). Assume that F = {a is an element of D : a = (a) over bar)} is a proper subfield of D and is contained in the center of D. Let I H-n be the set of n x n skew-Hermitian matrices over D. If H-1, H-2 is an element of I H-n (D) and rank (H-1 - H-2) = 1, H-1 and H-2 are said to be adjacent. The fundamental theorem of the geometry of skew-Hermitian matrices over D is proved: Let n greater than or equal to 2 and A be a bijective map of Y H-n (D) to itself, which preserves the adjacency. Then A is of the form A (X) = alpha (t)(P) over tildeX(sigma) P + H-0 For AllX is an element of I H-n (D), where alpha is an element of F*, P is an element of GL(n) (D), H-0 is an element of I H-n (D), and sigma is an automorphism of D. (C) 2004 Elsevier Inc. All rights reserved.
关键词geometry of matrices skew-Hermitian matrix adjacency division ring with an involution division ring of generalized quaternions
DOI10.1016/j.laa.2004.08.030
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000226476600007
出版者ELSEVIER SCIENCE INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/1713
专题中国科学院数学与系统科学研究院
通讯作者Huang, LP
作者单位1.Changshsa Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410076, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
3.Suzhou Univ, Inst Math, Suzhou 215006, Peoples R China
推荐引用方式
GB/T 7714
Huang, LP,Wan, ZX. Geometry of skew-Hermitian matrices[J]. LINEAR ALGEBRA AND ITS APPLICATIONS,2005,396:127-157.
APA Huang, LP,&Wan, ZX.(2005).Geometry of skew-Hermitian matrices.LINEAR ALGEBRA AND ITS APPLICATIONS,396,127-157.
MLA Huang, LP,et al."Geometry of skew-Hermitian matrices".LINEAR ALGEBRA AND ITS APPLICATIONS 396(2005):127-157.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, LP]的文章
[Wan, ZX]的文章
百度学术
百度学术中相似的文章
[Huang, LP]的文章
[Wan, ZX]的文章
必应学术
必应学术中相似的文章
[Huang, LP]的文章
[Wan, ZX]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。