CSpace  > 数学所
Sign-changing solutions and multiple solutions theorems for semilinear elliptic boundary value problems with a reaction term nonzero at zero
Zhang, ZT; Li, XD
2002-01-20
发表期刊JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN0022-0396
卷号178期号:2页码:298-313
摘要In this paper, we use the ordinary differential equation theory of Banach spaces and minimax theory, in particular, the local mountain pass lemma to study asymptotically linear and superlinear elliptic boundary value problems with a reaction term nonzero at zero, and get new multiple solutions and sign-changing solutions theorems. Moreover, the sign-changing solutions change sign exactly once under some conditions. (C) 2002 Elsevier Science.
关键词sign-changing solutions Dirichlet problems reaction term multiple solutions
DOI10.1006/jdeq.2001.4015
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000173855200002
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/17098
专题数学所
通讯作者Zhang, ZT
作者单位1.Acad Sinica, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
2.Univ Illinois, Dept Math, Urbana, IL 61801 USA
推荐引用方式
GB/T 7714
Zhang, ZT,Li, XD. Sign-changing solutions and multiple solutions theorems for semilinear elliptic boundary value problems with a reaction term nonzero at zero[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2002,178(2):298-313.
APA Zhang, ZT,&Li, XD.(2002).Sign-changing solutions and multiple solutions theorems for semilinear elliptic boundary value problems with a reaction term nonzero at zero.JOURNAL OF DIFFERENTIAL EQUATIONS,178(2),298-313.
MLA Zhang, ZT,et al."Sign-changing solutions and multiple solutions theorems for semilinear elliptic boundary value problems with a reaction term nonzero at zero".JOURNAL OF DIFFERENTIAL EQUATIONS 178.2(2002):298-313.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, ZT]的文章
[Li, XD]的文章
百度学术
百度学术中相似的文章
[Zhang, ZT]的文章
[Li, XD]的文章
必应学术
必应学术中相似的文章
[Zhang, ZT]的文章
[Li, XD]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。