KMS Of Academy of mathematics and systems sciences, CAS
| Simple algebras of Weyl type, II | |
| Zhao, KM | |
| 2002 | |
| 发表期刊 | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
![]() |
| ISSN | 0002-9939 |
| 卷号 | 130期号:5页码:1323-1332 |
| 摘要 | Over a field F of any characteristic, for a commutative associative algebra A, and for a commutative subalgebra D of Der(F)(A), the vector space A[D] which consists of polynomials of elements in D with coefficients in A and which is regarded as operators on A forms naturally an associative algebra. It is proved that, as an associative algebra, A[D] is simple if and only if A is D-simple. Suppose A is D-simple. Then, (a) A[D] is a free left A-module; (b) as a Lie algebra, the subquotient [A[D], A[D]]/(Z(A[D]) boolean AND [A[D], A[D]]) is simple (except for one case), where Z(A[D]) is the center of A[D]. The structure of this subquotient is explicitly described. This extends the results obtained by Su and Zhao. |
| 关键词 | simple Lie algebra simple associative algebra derivation |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied ; Mathematics |
| WOS记录号 | WOS:000173652900010 |
| 出版者 | AMER MATHEMATICAL SOC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/17029 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Zhao, KM |
| 作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China |
| 推荐引用方式 GB/T 7714 | Zhao, KM. Simple algebras of Weyl type, II[J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,2002,130(5):1323-1332. |
| APA | Zhao, KM.(2002).Simple algebras of Weyl type, II.PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,130(5),1323-1332. |
| MLA | Zhao, KM."Simple algebras of Weyl type, II".PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 130.5(2002):1323-1332. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Zhao, KM]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Zhao, KM]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Zhao, KM]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论